Skip to main content

Advertisement

Log in

Abortive long-lasting sporogony of two Haemoproteus species (Haemosporida, Haemoproteidae) in the mosquito Ochlerotatus cantans, with perspectives on haemosporidian vector research

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Haemoproteus spp. are cosmopolitan vector-born haemosporidian parasites, some species of which cause diseases in non-adapted birds. Recent polymerase chain reaction (PCR)-based studies have detected mitochondrial cytochrome b gene lineages of these Haemoproteus parasites in blood-sucking mosquitoes and speculated about possible involvement of these insects in transmission of avian haemoproteids. However, development of Haemoproteus lineages has not been documented in mosquitoes. We infected 304 individuals of Ochlerotatus cantans, a widespread Eurasian mosquito, with Haemoproteus tartakovskyi (lineage hSISKIN1) and Haemoproteus balmorali (lineage hROBIN1). Mosquitoes were allowed to take non-infected and infected blood meals and maintained in the laboratory until 17 days post-infection (dpi). They were tested for presence of sporogonic stages by microscopic and PCR-based methods. Microscopic examination revealed partial development of both parasites in the infected insects. Numerous ookinetes were seen in the gut area and adjacent tissues located in the head, thorax and abdomen of mosquitoes between 1 and 5 dpi. Numerous oocysts were seen in the midgut wall between 4 and 15 dpi; they were also present in the head and thorax of infected mosquitoes testifying to the active movement of ookinetes throughout the body. Oocysts degenerated between 11 and 17 dpi. Sporozoites were not seen in oocysts or mosquito salivary glands, indicating abortive sporogonic development at the oocyst stage. In accordance with microscopy data, PCR and sequencing revealed presence of the lineages hSISKIN1 and hROBIN1 in experimental mosquitoes as long as 15 and 17 dpi, respectively, demonstrating relatively long survival of Haemoproteus parasites in the resistant insects without DNA degeneration. The present study shows that PCR-based diagnostics should be carefully used in vector studies of haemosporidians because it detects parasites in insects for several weeks after initial infection, but does not distinguish abortive parasite development. Demonstration of infective sporozoites in insects is essential for definitively demonstrating the insects are vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arai M, Billker O, Morris HR, Panico M, Delcroix M, Dixon D, Ley SV, Sinden RE (2001) Both mosquito-derived xanthurenic acid and a host blood-derived factor regulate gametogenesis of Plasmodium in the midgut of the mosquito. Mol Biochem Parasit 116:17–24. doi:10.1016/S0166-6851(01)00299-7

    Article  CAS  Google Scholar 

  • Arez AP, Lopes D, Pinto J, Franco AS, Snounou G, do Rosario VE (2000) Plasmodium spp.: optimal protocols for PCR detection of low parasite numbers from mosquito (Anopheles spp.) samples. Exp Parasitol 94:269–272

    Article  PubMed  CAS  Google Scholar 

  • Atkinson CT, van Riper CIII (1991) Pathogenicity and epizootiology of avian haematozoa: Plasmodium, Leucocytozoon, and Haemoproteus. In: Loye JE, Zuk M (eds) Bird–parasite interactions: ecology, evolution, and behaviour. Oxford University Press, Oxford, pp 19–48

    Google Scholar 

  • Atkinson CT, Forrester DJ, Greiner EC (1988) Pathogenicity of Haemoproteus meleagridis (Haemosporina: Haemoproteidae) in experimentally infected domestic turkeys. J Parasitol 74:228–239

    Article  PubMed  CAS  Google Scholar 

  • Bairlein F (1986) Ein standardisiertes Futter für Ernährungsuntersuchungen an omnivoren Kleinvögeln. J Ornithol 127:338–340

    Article  Google Scholar 

  • Baker JR (1957) A new vector of Haemoproteus columbae in England. J Protozool 4:204–208

    Google Scholar 

  • Baker JR (1966) Haemoproteus palumbis sp. nov. (Sporozoa, Haemosporina) of the English wood-pigeon Columba p. palumbus. J Protozool 13:515–519

    PubMed  CAS  Google Scholar 

  • Beier JC (1998) Malaria parasite development in mosquitoes. Annu Rev Entomol 43:519–543

    Article  PubMed  CAS  Google Scholar 

  • Bennett GF, Garnham PCC, Fallis AM (1965) On the status of the genera Leucocytozoon Ziemann, 1898 and Haemoproteus Kruse, 1890 (Haemosporidia: Leucocytozoidae and Haemoproteidae). Can J Zool 43:927–932

    Article  PubMed  CAS  Google Scholar 

  • Bennett GF, Earlé RA, Du Toit H, Huchzermeyer FW (1992) A host–parasite catalogue of the haematozoa of the sub-Saharan birds. Onderstepoort J Vet Res 59:1–73

    PubMed  CAS  Google Scholar 

  • Bennett GF, Peirce MA, Ashford RW (1993) Avian haematozoa: mortality and pathogenicity. J Nat Hist 27:993–1001

    Article  Google Scholar 

  • Bensch S, Stjenman M, Hasselquist D, Östman Ö, Hansson B, Westerdahl H, Torres-Pinheiro R (2000) Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc R Soc B 276:1583–1589

    Article  Google Scholar 

  • Bensch S, Hellgren O, Pérez-Tris J (2009) A public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour 9:1353–1358. doi:10.1111/j.1755-0998.2009.02692.x

    Article  PubMed  Google Scholar 

  • Bernotienė R (2012) The fauna and seasonal activity of mosquitoes (Diptera: Culicidae) in the Curonian Spit (Russia, Lithuania). Euro Mosq Bull 30:72–78

    Google Scholar 

  • Billker O, Lindo V, Panico M, Etienne AE, Paxton T, Dell A, Rogers M, Sinden RE, Morris HR (1998) Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito. Nature 392:289–292

    Article  PubMed  CAS  Google Scholar 

  • Bishop MA, Bennett GF (1992) Host–parasite catalogue of the avian haematozoa: supplement 1, and bibliography of the avian blood-inhabiting haematozoa: supplement 2. Meml Univ Nfld Occas Pap Biol 15:1–244

    Google Scholar 

  • Cardona CJ, Ihejirika A, McClellan L (2002) Haemoproteus lophortyx infection in bobwhite quail. Avian Dis 46:249–255

    Article  PubMed  Google Scholar 

  • Carlson JS, Martínez-Gómez JE, Cornel A, Loiseau C, Sehgal RN (2011) Implications of Plasmodium parasite infected mosquitoes on an insular avifauna: the case of Socorro Island, México. J Vector Ecol 36:213–320. doi:10.1111/j.1948-7134.2011.00159.x

    Article  PubMed  Google Scholar 

  • Desser SS, Bennett GF (1993) The genera Leucocytozoon, Haemoproteus and Hepatocystis. In: Kreier JP, Baker JR (eds) Parasitic protozoa, vol 4, 2nd edn. Academic, New York, pp 273–307

    Google Scholar 

  • Donovan TA, Schrenzel M, Tucker TA, Pessier AP, Stalis IH (2008) Hepatic hemorrhage, hemocoelom, and sudden death due to Haemoproteus infection in passerine birds: eleven cases. J Vet Diagn Invest 20:304–313

    Article  PubMed  Google Scholar 

  • Ejiri H, Sato Y, Sawai R, Sasaki E, Matsumoto R, Ueda M, Higa Y, Tsuda Y, Omori S, Murata K, Yukawa M (2009) Prevalence of avian malaria parasite in mosquitoes collected at a zoological garden in Japan. Parasitol Res 105:629–633. doi:10.1007/s00436-009-1434-9

    Article  PubMed  Google Scholar 

  • Ejiri H, Sato Y, Kim KS, Tsuda Y, Murata K, Saito K, Watanabe Y, Shimura Y, Yukawa M (2011) Blood meal identification and prevalence of avian malaria parasite in mosquitoes collected at Kushiro Wetland, a subarctic zone of Japan. J Med Entomol 48:904–908

    Article  PubMed  Google Scholar 

  • Fabian MM, Toma H, Arakawa T, Sato Y (2004) Malaria parasite developmental analyses by the nested polymerase chain reaction method: an implication for the evaluation of mosquito infection rates in epidemiological studies. Southeast Asian J Trop Med Public Health 35:820–827

    PubMed  CAS  Google Scholar 

  • Fallis AM, Bennett GF (1960) Description of Haemoproteus canachites n. sp. (Sporozoa: Haemoproteidae) and sporogony in Culicoides (Diptera: Ceratopogonidae). Can J Zool 38:455–464

    Article  Google Scholar 

  • Ferrell ST, Snowden K, Marlar AB, Garner M, Lung NP (2007) Fatal hemoprotozoal infections in multiple avian species in a zoological park. J Zoo Wildlife Med 38:309–316

    Article  Google Scholar 

  • Foley DH, Harrison G, Murphy JR, Dowler M, Rueda LM, Wilkerson RC (2012) Mosquito bisection as a variable in estimates of PCR-derived malaria sporozoites rates. Malar J 11:145. doi:10.1186/1475-2875-11-145

    Article  PubMed  CAS  Google Scholar 

  • Garnham PCC (1966) Malaria parasites and other haemosporidia. Blackwell, Oxford

    Google Scholar 

  • Glaizot O, Fumagalli L, Iritano K, Lalubin F, Van Rooyen J, Christe P (2012) High prevalence and lineage diversity of avian malaria in wild populations of great tits (Parus major) and mosquitoes (Culex pipiens). PLoS One 7:e34964. doi:10.1371/journal.pone.0034964

    Article  PubMed  CAS  Google Scholar 

  • Greiner EC, Bennett GF, White EM, Coombs RF (1975) Distribution of the avian hematozoa of North America. Can J Zool 53:1762–1787

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user—friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp Ser (Oxf) 41:95–98

    CAS  Google Scholar 

  • Hellgren O, Waldenström J, Bensch S (2004) A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol 90:797–802

    Article  PubMed  CAS  Google Scholar 

  • Iezhova TA, Dodge M, Sehgal RN, Smith TB, Valkiūnas G (2011) New avian Haemoproteus species (Haemosporida: Haemoproteidae) from African birds, with a critique of the use of host taxonomic information in hemoproteid classification. J Parasit 97:682–694. doi:10.1645/GE-2709.1

    Article  PubMed  Google Scholar 

  • Ishtiaq F, Guillaumot L, Clegg SM, Phillimore AB, Black RA, Owens IPF, Mundy NI, Sheldon BC (2008) Avian haematozoan parasites and their associations with mosquitoes across Southwest Pacific Islands. Mol Ecol 17:4545–4555. doi:10.1111/j.1365-294X.2008.03935.x

    Article  PubMed  CAS  Google Scholar 

  • Kazlauskienė R, Bernotienė R, Palinauskas V, Iezhova TA, Valkiūnas G (2013) Plasmodium relictum (lineages pSGS1 and pGRW11): Complete synchronous sporogony in mosquitoes Culex pipiens pipiens. Exp Parasitol 133:454–461. doi:10.1016/j.exppara.2013.01.008

    Article  PubMed  Google Scholar 

  • Kim KS, Tsuda Y (2012) Avian Plasmodium lineages found in spot surveys of mosquitoes from 2007 to 2010 at Sakata wetland, Japan: do dominant lineages persist for multiple years? Mol Ecol 21:5374–5385. doi:10.1111/mec.12047

    Article  PubMed  CAS  Google Scholar 

  • Kim KS, Tsuda Y, Sasaki T, Kobayashi M, Hirota Y (2009) Mosquito blood–meal analysis for avian malaria study in wild bird communities: laboratory verification and application to Culex sasai (Diptera: Culicidae) collected in Tokyo, Japan. Parasitol Res 105:1351–1357. doi:10.1007/s00436-009-1568-9

    Article  PubMed  Google Scholar 

  • Kimura M, Darbro JM, Harrington LC (2010) Avian malaria parasites share congeneric mosquito vectors. J Parasitol 96:144–151. doi:10.1645/GE-2060.1

    Article  PubMed  CAS  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200

    Article  PubMed  CAS  Google Scholar 

  • Križanauskienė A, Iezhova TA, Palinauskas V, Chernetsov N, Valkiūnas G (2012) Haemoproteus nucleocondensus n. sp. (Haemosporida, Haemoproteidae) from a Eurasian songbird, the Great Reed Warbler Acrocephalus arundinaceus. Zootaxa 3441:36–46

    Google Scholar 

  • Levin II, Valkiūnas G, Iezhova TA, O'Brien SL, Parker PG (2012) Novel Haemoproteus species (Haemosporida: Haemoproteidae) from the swallow-tailed gull (Lariidae), with remarks on the host range of hippoboscid-transmitted avian hemoproteids. J Parasitol 98:847–854. doi:10.1645/GE-3007.1

    Article  PubMed  Google Scholar 

  • Malmqvist B, Strasevičius D, Hellgren O, Adler PH, Bensch S (2004) Vertebrate host specificity of wild-caught blackflies revealed by mitochondrial DNA in blood. Proc Biol Sci 271:152–155

    Article  Google Scholar 

  • Martínez-de la Puente J, Martínez J, Rivero-de Aguilar J, Herrero J, Merino S (2011) On the specificity of avian blood parasites: revealing specific and generalist relationships between haemosporidians and biting midges. Mol Ecol 20:3275–3287. doi:10.1111/j.1365-294X.2011.05136.x

    Article  PubMed  Google Scholar 

  • Martinsen ES, Paperna I, Schall JJ (2006) Morphological versus molecular identification of avian Haemosporidia: an exploration of three species concepts. Parasitology 133:279–288

    Article  PubMed  CAS  Google Scholar 

  • Martinsen EM, Perkins SL, Schall JJ (2008) A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): evolution of life-history traits and host switches. Mol Phylogenet Evol 47:261–273. doi:10.1016/j.ympev.2007.11.012

    Article  PubMed  CAS  Google Scholar 

  • Marzal A, de Lopes F, Navarro C, Møller AP (2005) Malarial parasites decrease reproductive success: an experimental study in a passerine bird. Oecologia 142:541–545

    Article  PubMed  Google Scholar 

  • McClure HE, Poonswad P, Greiner EC, Laird M (1978) Haematozoa in the birds of Eastern and Southern Asia. Memorial University of Newfoundland, St. John’s

  • Merino S, Moreno J, Sanz JJ, Arriero E (2000) Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc Biol Sci 267:2507–2510

    Article  PubMed  CAS  Google Scholar 

  • Miltgen F, Landau I, Ratanaworabhan N, Yenbutra S (1981) Parahaemoproteus desseri n. sp.; Gamétogonie et schizogonie chez l’hôte naturel: Psittacula roseata de Thailande, et sporogonie expérimentale chez Culicoides nubeculosus. Ann Parasitol Hum Comp 56:123–130

    PubMed  CAS  Google Scholar 

  • Møller AP, Nielsen JT (2007) Malaria and risk of predation: a comparative study of birds. Ecology 88:871–881

    Article  PubMed  Google Scholar 

  • Nayar JK, Young MD, Forrester DJ (1980) Wyeomyia vanduzeei, an experimental host for wild turkey malaria Plasmodium hermani. J Parasitol 66:166–167

    Article  PubMed  CAS  Google Scholar 

  • Njabo K, Cornel AJ, Sehgal RNM, Loiseau C, Buermann W, Harrigan RJ, Pollinger J, Valkiūnas G, Smith TB (2009) Coquillettidia (Culicidae, Diptera) mosquitoes are natural vectors of avian malaria in Africa. Malar J 8:193. doi:10.1186/1475-2875-8-193

    Article  PubMed  Google Scholar 

  • Njabo KY, Cornel AJ, Bonneaud C, Toffelmier E, Sehgal RN, Valkiūnas G, Russell AF, Smith TB (2011) Nonspecific patterns of vector, host and avian malaria parasites associations in a central African rainforest. Mol Ecol 20:1049–1061. doi:10.1111/j.1365-294X.2010.04904.x

    Article  PubMed  CAS  Google Scholar 

  • Nordling D, Anderson M, Zohari S, Gustafsson L (1998) Reproductive effort reduces specific immune response and parasite resistance. Proc R Soc Lond B 265:1291–1298

    Article  Google Scholar 

  • Olias PM, Wegelin W, Zenker S, Freter A, Gruber D, Klopfleisch R (2011) Avian malaria deaths in parrots, Europe. Emerg Infect Dis 17:950–952. doi:10.3201/eid1705.101618

    Article  PubMed  Google Scholar 

  • Palinauskas V, Kosarev V, Shapoval A, Bensch S, Valkiūnas G (2007) Comparison of mitochondrial cytochrome b gene lineages and morphospecies of two avian malaria parasites of the subgenera of Haemamoeba and Giovannolaia (Haemosporida: Plasmodiidae). Zootaxa 1626:39–50

    Google Scholar 

  • Palinauskas V, Valkiūnas G, Bolshakov CV, Bensch S (2008) Plasmodium relictum (lineage P-SGS1): effects on experimentally infected passerine birds. Exp Parasitol 120:372–380. doi:10.1016/j.exppara.2008.09.001

    Article  PubMed  Google Scholar 

  • Peirce MA (1981) Distribution and host-parasite check-list of the haematozoa of birds in Western Europe. J Nat Hist 15:419–458

    Article  Google Scholar 

  • Santiago-Alarcon D, Outlaw DC, Ricklefs RE, Parker PG (2010) Phylogenetic relationships of haemosporidian parasites in New World Columbiformes, with emphasis on the endemic Galapagos dove. Int J Parasitol 40:463–470. doi:10.1016/j.ijpara.2009.10.003

    Article  PubMed  CAS  Google Scholar 

  • Santiago-Alarcon D, Palinauskas V, Schaefer HH (2012) Diptera vectors of avian Haemosporidian parasites: untangling parasite life cycles and their taxonomy. Biol Rev 87:928–964. doi:10.1111/j.1469-185X.2012.00234.x

    Article  PubMed  Google Scholar 

  • Schneider D, Shahabuddin M (2000) Malaria parasite development in a Drosophila model. Science 288:2376–2379

    Article  PubMed  CAS  Google Scholar 

  • Sehgal RNM, Hull AC, Anderson NL, Valkiūnas G, Markovets MJ, Kawamura S, Tell LA (2006) Evidence for cryptic speciation of Leucocytozoon spp. (Haemosporida, Leucocytozoidae) in diurnal raptors. J Parasitol 92:375–379

    Article  PubMed  Google Scholar 

  • Sinden RE (1998) Gametogenesis and sexual development. In: Sherman IW (ed) Malaria: parasite biology, pathogenesis, and protection. American Society for Microbiology Press, Washington, DC, pp 25–48

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Valkiūnas G (2005) Avian malaria parasites and other haemosporidia. CRC, Boca Raton

    Google Scholar 

  • Valkiūnas G (2011) Haemosporidian vector research: marriage of molecular and microscopical approaches is essential. Mol Ecol 20:3084–3086. doi:10.1111/j.1365-294x.2011.05187.x

    Article  PubMed  Google Scholar 

  • Valkiūnas G, Liutkevičius G, Iezhova TA (2002) Complete development of three species of Haemoproteus (Haemosporida, Haemoproteidae) in the biting midge Culicoides impunctatus (Diptera, Ceratopogonidae). J Parasitol 88:864–868

    PubMed  Google Scholar 

  • Valkiūnas G, Iezhova TA, Križanauskienė A, Palinauskas V, Bensch S (2008) A comparative analysis of microscopy and PCR-based detection methods for blood parasites. J Parasitol 94:1395–1401. doi:10.1645/GE-1570.1

    Article  PubMed  Google Scholar 

  • Valkiūnas G, Santiago-Alarcon D, Levin II, Iezhova TA, Parker PG (2010) A new Haemoproteus species (Haemosporida: Haemoproteidae) from the endemic Galapagos dove Zenaida galapagoensis, with remarks on the parasite distribution, vectors, and molecular diagnostics. J Parasitol 96:783–792. doi:10.1645/GE-2442.1

    Article  PubMed  Google Scholar 

  • Valkiūnas G, Iezhova TA, Evans E, Carlson JS, Martínez-Gómez JE, Sehgal RNM (2013a) Two new Haemoproteus species (Haemosporida: Haemoproteidae) from columbiform birds. J Parasitol 99. doi:10.1645/12-98.1

  • Valkiūnas G, Palinauskas V, Križanauskienė A, Bernotienė R, Kazlauskienė R, Iezhova TA (2013b) Further observations on in vitro hybridization of hemosporidian parasites: patterns of ookinete development in Haemoproteus spp. J Parasitol 99:124–136. doi:10.1645/GE-3226.99

    Article  PubMed  Google Scholar 

  • Ventim R, Ramos JA, Osório H, Lopes RJ, Pérez-Tris J, Mendes L (2012) Avian malaria infections in western European mosquitoes. Parasitol Res 111:637–645. doi:10.1007/S00436-012-2880-3

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the staff of the Biological Station “Rybachy” for assistance in the field. The director of the Biological Station “Rybachy”, Casimir V. Bolshakov, is acknowledged for generously providing facilities for the experimental research. The experiments described herein comply with the current laws of Lithuania and Russia. The authors acknowledge the support of the Global Grant (VPI-3.1.-ŠMM-07-K-01-047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gediminas Valkiūnas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valkiūnas, G., Kazlauskienė, R., Bernotienė, R. et al. Abortive long-lasting sporogony of two Haemoproteus species (Haemosporida, Haemoproteidae) in the mosquito Ochlerotatus cantans, with perspectives on haemosporidian vector research. Parasitol Res 112, 2159–2169 (2013). https://doi.org/10.1007/s00436-013-3375-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-013-3375-6

Keywords

Navigation