Skip to main content
Log in

Glutathione and iron at the crossroad of redox metabolism in rats infected by Trypanosoma evansi

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the changes in hematological and biochemical parameters of blood during acute Trypanosoma evansi infection in Wistar rats. The end points studied were hematologic parameters, red blood cell fragility, iron content, and glutathione and lipid peroxidation levels. Forty-eight animals were infected with trypomastigotes and distributed into five groups according to the level of parasitemia. Twelve non-inoculated animals were used as control. Parasitemia increased progressively, reaching highest scores at 15 days post-inoculation. At this point, several deleterious effects were observed such as an increase in iron content, in osmotic fragility, and in lipid peroxidation index, while glutathione decreased drastically. These changes were highly correlated to parasitemia (p < 0.0001) and among each other (p ≤ 0.001). Hematological indices (Hb, packed cell volume (PCV), red blood cells (RBC), and mean corpuscular hemoglobin concentration) were also correlated to parasitemia (p ≤ 0.0003) but failed to correlate to the other variables. Along with increase in iron, RBC fragility produced a decrease in RBC, PCV, and Hb, but not in mean corpuscular volume. Decrease in glutathione was negatively correlated to the end products of lipid peroxidation, clearly indicating the establishment of a pro-oxidant condition. The results show that the infection causes hematological impairments, increases iron and osmotic fragility, along with marked oxidative stress in red blood cells of rats inoculated with T. evansi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Mohammed HI (2006) Parasitological and immunological response of experimental infection with Trypanosoma evansi in rats. J Egypt Soc Parasitol 36:363–371

    PubMed  Google Scholar 

  • Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    PubMed  CAS  Google Scholar 

  • Breidbach T, Scory S, Krauth-Siegel RL, Steverding D (2002) Growth inhibition of bloodstream forms of Trypanosoma brucei by the iron chelator deferoxamine. Int J Parasitol 32:473–479

    Article  PubMed  CAS  Google Scholar 

  • Cadioli FA, Marques LC, Machado RZ, Alessi AC, Aquino LPCT, Barnabé PA (2006) Experimental Trypanosoma evansi in donkeys: hematological, biochemical and histopathological changes. Arq Bras Med Vet Zootec 5:749–756

    Article  Google Scholar 

  • Chaudhuri S, Varshney JP, Patra RC (2008) Erythrocytic antioxidant defense, lipid peroxides level and blood iron, zinc and copper concentrations in dogs naturally infected with Babesia gibsoni. Res Vet Sci 85:120–124

    Article  PubMed  CAS  Google Scholar 

  • Cimen MY (2008) Free radical metabolism in human erythrocytes. Clin Chim Acta 390:1–11

    Article  PubMed  CAS  Google Scholar 

  • Da Silva AS, Costa MM, Wolkmer P, Zanette RA, Faccio L, Gressler LT, Dorneles TEA, Santurio JM, dos Anjos Lopes ST, Monteiro SG (2009) Trypanosoma evansi: hematologic changes in experimentally infected cats. Exp Parasitol 123:31–34

    Article  PubMed  Google Scholar 

  • Da Silva AS, Pierezan F, Wolkmer P, Costa MM, Oliveiro C, Tonin AA, Santurio M, Lopes STA, Monteiro SG (2010) Pathological findings associated with experimental infection by Trypanosoma evansi in cats. J Comp Pathol 142:170–176

    Article  PubMed  Google Scholar 

  • Davis CE, Robbins RS, Weller RD, Braude AI (1974) Thrombocytopenia in experimental trypanosomiasis. J Clin Invest 53:1359–1361

    Article  PubMed  CAS  Google Scholar 

  • Dow RB (1994) The clinical and laboratory utility of platelet volume parameters. Aust J Med Sci 1:1–8

    Google Scholar 

  • Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants and nutrition. Nutrition 10:872–879

    Article  Google Scholar 

  • Feix JB, Bachowski GJ, Girotti AW (1991) Photodynamic action of merocyanine 540 on erythrocyte membranes: structural perturbation of lipid and protein constituents. Biochim Biophys Acta 1075:28–35

    Article  PubMed  CAS  Google Scholar 

  • Feldman BV, Zinkl JG, Jain NC (2000) Schalm’s veterinary hematology, Fifthth edn. Lippincott Williams & Wilkins, Philadelphia, p 1344

    Google Scholar 

  • França RT, Da Silva AS, Wolkmer P, Oliveira VA, Pereira ME, Leal MLR, Silva CB, Nunes MAG, Dressler VL, Mazzanti CM, Monteiro SG, Lopes STA (2011) Delta-aminolevulinate dehydratase activity in red blood cells of rats infected with Trypanosoma evansi. Parasitol 138:1272–1277

    Article  Google Scholar 

  • Habila N, Inuwa MH, Aimola Idowu A, Udeh MU, Haruna E (2011) Pathogenic mechanisms of Trypanosoma evansi infections. Res Vet Sci 93:13–17

    Article  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (2006) Free radicals in biology and medicine, 4th edn. Clarendon, Oxford

    Google Scholar 

  • Harvey JW (1997) The erythrocyte: physiology, metabolism and biochemical disorders. In: Kaneko JJ, Harvey JW (eds) Clinical biochemistry of domestic animals, 5th edn. Academic, London, pp 157–203

    Chapter  Google Scholar 

  • Herrera HM, Davila AM, Norek A, Abreu UG, Souza SS, Da Andrea PS, Jansen AM (2004) Enzootiology of Trypanosoma evansi in Pantanal, Brazil. Vet Parasitol 125:263–275

    Article  PubMed  CAS  Google Scholar 

  • Holzmuller P, Grébaut P, Peltier JB, Brizard JP, Perrone T, Gonzatti M, Bengaly Z, Rossignol M, Aso PM, Vincendeau P, Cuny G, Boulangé A, Frutos R (2008) Secretome of animal trypanosomes: from a standard method toward new diagnostic and therapeutic targets. Ann NY Acad Sci 1149:337–342

    Article  PubMed  CAS  Google Scholar 

  • Hwang C, Sinskey AJ, Lodish HF (1992) Oxidized redox state of glutathione in the endoplasmic-reticulum. Science 257:1496–1502

    Article  PubMed  CAS  Google Scholar 

  • Igbokwe IO, Umar IA, Omage JJ, Ibrahim NDG, Kadima KB, Obagaiye OK, Saror DI, Esievo K (1996) Effect of acute Trypanosoma vivax infection on cattle erythrocyte glutathione and susceptibility to in vitro peroxidation. Vet Parasitol 63:215–224

    Article  PubMed  CAS  Google Scholar 

  • Jain SK, Mohandas N, Clark MR, Shobel SB (1973) The effect of MDA, a product of lipid peroxidation on the deformability, dehydration and 51Cr survival of erythrocytes. Br J Haematol 53:247–252

    Article  Google Scholar 

  • Josh PP, Shegokar VR, Powar RM, Herder S, Katti R, Salkar HR, Dani VS, Bhargava A, Jannin J, Truc P (2005) Human trypanosomiasis caused by Trypanosoma evansi in India: the first case report. AmJTrop Med Hyg 73:491–495

    Google Scholar 

  • Lorne S (1986) Trypanosomiasis. A veterinary perspective. Pergamon, New York

    Google Scholar 

  • Meneghini R (1997) Iron homeostasis, oxidative stress, and DNA damage. Free Rad Biol Med 5:783–792

    Article  Google Scholar 

  • Mijares A, Vivas J, Abad C, Betancourt M, Piñero S, Proverbi F, Marín R, Portillo R (2010) Trypanosoma evansi: effect of experimental infection on the osmotic fragility, lipid peroxidation and calcium-ATPase activity of rat red blood cells. Exp Parasitol 124:301–305

    Article  PubMed  CAS  Google Scholar 

  • Muduuli DS, Marquardt RR, Guenter W (1982) Effect of dietary vicine and vitamin E supplementation on the productive performance of growing and laying chickens. Br J Nut 47:53–60

    Article  CAS  Google Scholar 

  • Olaho-Mukani W, Mahamat H (2000) Trypanosomiasis in the dromedary camel. In: Gahlot TK (ed) Selected topics on camelids. Camelid, Bikaner, pp 255–270

    Google Scholar 

  • Omer OH, Mousa HM, Al-Wabel N (2007) Study on the antioxidant status of rats experimentally infected with Trypanosoma evansi. Vet Parasitol 145:142–145

    Article  PubMed  CAS  Google Scholar 

  • Ranjithkumar M, Kamili NM, Saxena A, Dan A, Dey S, Raut SS (2011) Disturbance of oxidant/antioxidant equilibrium in horses naturally infected with Trypanosoma evansi. Vet Parasitol 180:349–353

    Article  PubMed  CAS  Google Scholar 

  • Rice-Evans C, Baysal E (1987) Iron-mediated oxidative stress in erythrocytes. Biochem J 244:191–196

    PubMed  CAS  Google Scholar 

  • Robins-Browne RM, Schneider J, Metz J (1975) Thrombocytopenia in trypanosomiasis. AmJTrop Med Hyg 24:226–231

    CAS  Google Scholar 

  • Saleh MA, Al-Salahy MB, Sanousi SA (2009) Oxidative stress in blood of camels (Camelus dromedaries) naturally infected with Trypanosoma evansi. Vet Parasitol 162:192–199

    Article  PubMed  CAS  Google Scholar 

  • Schell D, Borowy NK, Overat P (1991) Transferrin is a growth factor for the bloodstream form of Trypanosoma brucei. Parasitol Res 77:558–560

    Article  PubMed  CAS  Google Scholar 

  • Silva RA, Arosemena NA, Herrera HM, Sahib CA, Ferreira MS (1995) Outbreak of trypanosomosis due to Trypanosoma evansi in horses of Pantanal Mato-grossense, Brazil. Vet Parasitol 60:167–171

    Article  PubMed  CAS  Google Scholar 

  • Steverding D (1998) Bloodstream forms of Trypanosoma brucei require only small amounts of iron for growth. Parasitol Res 84:59–62

    Article  PubMed  CAS  Google Scholar 

  • Steverding D (2003) The significance of transferrin receptor variation in Trypanosoma brucei. Trends Parasitol 3:125–127

    Article  Google Scholar 

  • Stijlemans B, Vankrunkelsven A, Brys L, Magez S, De Baetselier P (2008) Role of iron homeostasis in trypanosomiasis-associated anemia. Immunobiol 213:823–835

    Article  CAS  Google Scholar 

  • Sturm B, Twaroch T, Knapitsch B, Czingraber S, Ternes N, Goldenberg H, Scheiber-Mojdehkar B (2006) Differential response of iron metabolism to oxidative stress generated by antimycin A and nitrofurantoin. Biochim 6:575–581

    Article  Google Scholar 

  • Taylor MC, Kelly JM (2010) Iron metabolism in trypanosomatids and its crucial role in infection. Parasitol 137:899–917

    Article  CAS  Google Scholar 

  • Telen MJ, Kaufman RE (1999) The mature erythrocyte. In: Foerster J, Greer JP (eds) Wintrobe’s clinical hematology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Valko M, Leibfritz D, Moncola J, Cronin MTD, Mazura M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Review Intern J Biochem Cell Biol 39:44–84

    Article  CAS  Google Scholar 

  • Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  PubMed  CAS  Google Scholar 

  • Wen JJ, Yachelini PC, Sembaj A, Manzur RE, Garg NJ (2006) Increased oxidative stress is correlated with mitochondrial dysfunction in chagasic patients. Free Rad Biol Med 41:270–276

    Article  PubMed  CAS  Google Scholar 

  • Wolkmer P, Da Silva AS, Traesel CK, Paim FC, Cargelutti JF, Pagnoncelli M, Picada ME, Monteiro SG, Lopes STDA (2009) Lipid peroxidation associated with anemia in rats experimentally infected with Trypanosoma evansi. Vet Parasitol 165:41–46

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CNPq, FAPESC, and Universidade do Estado de Santa Catarina.Valesca Anschau was a fellowship from Secretaria de Educação do Estado de Santa Catarina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Claudio Miletti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anschau, V., Dafré, A.L., Perin, A.P. et al. Glutathione and iron at the crossroad of redox metabolism in rats infected by Trypanosoma evansi . Parasitol Res 112, 2361–2366 (2013). https://doi.org/10.1007/s00436-013-3400-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-013-3400-9

Keywords

Navigation