Skip to main content
Log in

Complete sporogony of Plasmodium relictum (lineage pGRW4) in mosquitoes Culex pipiens pipiens, with implications on avian malaria epidemiology

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Plasmodium relictum (lineage pGRW4) causes malaria in birds and is actively transmitted in countries with warm climates and also temperate regions of the New World. In Europe, the lineage pGRW4 has been frequently reported in many species of Afrotropical migrants after their arrival from wintering grounds, but is rare in European resident birds. Obstacles for transmission of this parasite in Europe have not been identified. Culex quinquefasciatus is an effective vector of pGRW4 malaria, but this mosquito is absent from temperate regions of Eurasia. It remains unclear if the lineage pGRW4 completes sporogony in European species of mosquitoes. Here we compare the sporogonic development of P. relictum (pGRW4) in experimentally infected mosquitoes Culex pipiens pipiens form molestus, C. quinquefasciatus, and Ochlerotatus cantans. The pGRW4 parasite was isolated from a garden warbler Sylvia borin, multiplied, and used to infect laboratory-reared Culex spp. and wild-caught Ochlerotatus mosquitoes by allowing them to take blood meals on infected birds. The exposed females were maintained at a mean laboratory temperature of 19 °C, which ranged between 14 °C at night and 24 °C during daytime. They were dissected on intervals to study the development of sporogonic stages. Only ookinetes developed in O. cantans; sporogonic development was abortive. The parasite completed sporogony in both Culex species, with similar patterns of development, and sporozoites were reported in the salivary glands 16 days after infection. The presence of sporogonic stages of the lineage pGRW4 in mosquitoes was confirmed by PCR-based testing of (1) the sporozoites present in salivary glands and (2) the single oocysts, which were obtained by laser microdissection from infected mosquito midguts. This study shows that P. relictum (pGRW4) completes sporogony in C. p. pipiens at relatively low temperatures. We conclude that there are no restrictions for spreading this bird infection in Europe from the point of view of vector availability and temperature necessary for sporogony. Other factors should be considered and were discussed for the explanation of rare reports of this malaria parasite in Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Atkinson CT, Thomas NJ, Hunter DB (2008) Parasitic diseases of wild birds. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Atkinson CT, Utzurrum RB, LaPointe DA, Camp RJ, Crampton LH, Foster JT, Giambelluca TW (2014) Changing climate and the altitudinal range of avian malaria in the Hawaiian Islands—an ongoing conservation crisis on the island of Kaua’i. Glob Chang Biol 20:2426–2436

    Article  PubMed  Google Scholar 

  • Beadell JS, Ishtiaq F, Covas R, Melo M, Warren BH, Atkinson CT, Bensch S, Graves GR, Jhala YV, Peirce MA, Rahmani AR, Fonseca DM, Fleischer RC (2006) Global phylogeographic limits of Hawaii’s avian malaria. Proc R Soc B 273:2935–2944

    Article  PubMed Central  PubMed  Google Scholar 

  • Beadell JS, Covas R, Gebhard C, Ishtiaq F, Melo M, Schmidt BK, Perkins S, Graves GR, Fleischer RC (2009) Host associations and evolutionary relationships of avian blood parasites from West Africa. Int J Parasitol 39:257–266

    Article  PubMed Central  PubMed  Google Scholar 

  • Bennett GF, Peirce MA, Ashford RW (1993) Avian haematozoa: mortality and pathogenicity. J Nat Hist 27:993–1001

    Article  Google Scholar 

  • Bensch S, Stjenman M, Hasselquist D, Östman Ö, Hansson B, Westerdahl H, Torres-Pinheiro R (2000) Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc R Soc B 276:1583–1589

    Article  Google Scholar 

  • Bensch S, Waldenström J, Jonzén N, Westerdahl H, Hansson B, Sejberg D, Hasselquist D (2007) Temporal dynamics and diversity of avian malaria parasites in a single host species. J Anim Ecol 76:112–122

    Article  PubMed  Google Scholar 

  • Bensch S, Hellgren O, Pérez-Tris J (2009) A public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour 9:1353–1358

    Article  PubMed  Google Scholar 

  • Braga EM, Silveira P, Belo NO, Valkiūnas G (2011) Recent advances in the study of avian malaria: an overview with an emphasis on the distribution of Plasmodium spp. in Brazil. Mem Inst Oswaldo Cruz 1:3–11

    Google Scholar 

  • Chagas CRF, Valkiūnas G, Nery CVC, Henrique PC, Gonzalez IHL, Monteiro EF, de Oliveira Guimarães L, Romano CM, Kirchgatter K (2013) Plasmodium (Novyella) nucleophilum from an Egyptian goose in Sao Paulo Zoo, Brazil: microscopic confirmation and molecular characterization. Int J Parasitol Parasites Wildl 2:286–291

    Article  PubMed Central  PubMed  Google Scholar 

  • Clark NJ, Clegg SM, Lima MR (2014) A review of global diversity in avian haemosporidians (Plasmodium and Haemoproteus: Haemosporida): new insights from molecular data. Int J Parasitol 44:329–338

    Article  PubMed  Google Scholar 

  • Cornet SA, Nicot A, Rivero A, Gandon S (2013) Both infected and uninfected mosquitoes are attracted toward malaria infected birds. Malar J 12:179

    Article  PubMed Central  PubMed  Google Scholar 

  • Dimitrov D, Zehtindjiev P, Bensch S (2010) Genetic diversity of avian blood parasites in SE Europe: cytochrome b lineages of the genera Plasmodium and Haemoproteus (Haemosporida) from Bulgaria. Acta Parasitol 55:201–209

    Article  CAS  Google Scholar 

  • Dimitrov D, Palinauskas V, Iezhova TA, Bernotienė R, Ilgūnas M, Bukauskaitė D, Zehtindjiev P, Ilieva M, Shapoval AP, Bolshakov CV, Markovets MY, Bensch S, Valkiūnas G (2015) Plasmodium spp.: an experimental study on vertebrate host susceptibility to avian malaria. Exp Parasitol 148:1–16

    Article  CAS  PubMed  Google Scholar 

  • Dinhopl N, Nedorost N, Mostegl MM, Weissenbacher-Lang C, Weissenböck H (2015) In situ hybridization and sequence analysis reveal an association of Plasmodium spp. with mortalities in wild passerine birds in Austria. Parasitol Res 114:1455–1462

    Article  PubMed  Google Scholar 

  • Drovetski SV, Aghayan SA, Mata VA, Lopes RJ, Mode NA, Harvey JA, Voelker G (2014) Does the niche breadth or trade-off hypothesis explain the abundance-occupancy relationship in avian Haemosporidia? Mol Ecol 23:3322–3329

  • Ejiri H, Sato Y, Sawai R, Sasaki E, Matsumoto R, Ueda M, Higa Y, Tsuda Y, Omori S, Murata K, Yukawa M (2009) Prevalence of avian malaria parasite in mosquitoes collected at a zoological garden in Japan. Parasitol Res 105:629–633

    Article  PubMed  Google Scholar 

  • Ferraguti M, Martínez-de la Puente J, Ruiz S, Soriguer R, Figuerola J (2013) On the study of the transmission networks of blood parasites from SW Spain: diversity of avian haemosporidians in the biting midge Culicoides circumscriptus and wild birds. Parasit Vectors 6:208. doi:10.1186/1756-3305-6-208

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferrer ES, García-Navas V, Sanz JJ, Ortego J (2012) Molecular characterization of avian malaria parasites in three Mediterranean blue tit (Cyanistes caeruleus) populations. Parasitol Res 111:2137–2142

    Article  PubMed  Google Scholar 

  • Freed LA, Cann RL (2013) Vector movement underlies avian malaria at upper elevation in Hawaii: implications for transmission of human malaria. Parasitol Res 112:3887–3895

    Article  PubMed  Google Scholar 

  • Gabaldon A, Ulloa G (1980) Holoendemicity of malaria: an avian model. Trans R Soc Trop Med Hyg 74:501–507

    Article  CAS  PubMed  Google Scholar 

  • Garnham PCC (1966) Malaria parasites and other Haemosporidia. Blackwell, Oxford

    Google Scholar 

  • Gomes BCA, Sousa MT, Novo FB, Freitas R, Alves AR, Corte-Real P, Salgueiro M, Donnelly AP, Almeida AP, Pinto J (2009) Asymmetric introgression between sympatric molestus and pipiens forms of Culex pipiens (Diptera: Culicidae) in the Comporta region, Portugal. BMC Evol Biol 9:262

    Article  PubMed Central  PubMed  Google Scholar 

  • González AD, Lotta IA, García LF, Moncada LI, Matta NE (2015) Avian haemosporidians from Neotropical highlands: evidence from morphological and molecular data. Parasitol Int 64:48–59

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp Ser 41:95–98

  • Hellgren O, Waldenström J, Bensch S (2004) A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol 90:797–802

    Article  CAS  PubMed  Google Scholar 

  • Hellgren O, Waldenström J, Peréz-Tris J, Szöll E, Si O, Hasselquist D, Krizanauskienė A, Ottosson U, Bensch S (2007) Detecting shifts of transmission areas in avian blood parasites: a phylogenetic approach. Mol Ecol 16:1281–1290

    Article  PubMed  Google Scholar 

  • Hellgren O, Kutzer M, Bensch B, Valkiūnas G, Palinauskas V (2013) Identification and characterization of the merozoite surface protein 1 (msp1) gene in a host-generalist avian malaria parasite, Plasmodium relictum (lineages SGS1 and GRW4) with the use of blood transcriptome. Malar J 12:381

    Article  PubMed Central  PubMed  Google Scholar 

  • Jarvi SI, Farias ME, LaPointe DA, Belcaid M, Atkinson CT (2013) Next-generation sequencing reveals cryptic mtDNA diversity of Plasmodium relictum in the Hawaiian Islands. Parasitology 140:1741–1750

    Article  CAS  PubMed  Google Scholar 

  • Kazlauskienė R, Bernotienė R, Palinauskas V, Iezhova TA, Valkiūnas G (2013) Plasmodium relictum (lineages pSGS1 and pGRW11): complete synchronous sporogony in mosquitoes Culex pipiens pipiens. Exp Parasitol 133:454–461

    Article  PubMed  Google Scholar 

  • LaPointe DA, Goff ML, Atkinson CT (2010) Thermal constraints to the sporogonic development and altitudinal distribution of avian malaria Plasmodium relictum in Hawai’i. J Parasitol 96:318–324

    Article  PubMed  Google Scholar 

  • Loiseau C, Harrigan RJ, Robert A, Bowie RC, Thomassen HA, Smith TB, Sehgal RN (2012) Host and habitat specialization of avian malaria in Africa. Mol Ecol 21:431–441

    Article  PubMed Central  PubMed  Google Scholar 

  • Martínez J, Martínez-De La Puente J, Herrero J, Del Cerro S, Lobato E, Rivero-De Aguilar J, Vásquez RA, Merino S (2009) A restriction site to differentiate Plasmodium and Haemoproteus infections in birds: on the inefficiency of general primers for detection of mixed infections. Parasitology 136:713–722

    Article  PubMed  Google Scholar 

  • Marzal A, Ricklefs RE, Valkiūnas G, Albayrak T, Arriero E, Bonneaud C, Czirják GA, Ewen J, Hellgren O, Hořáková D, Iezhova TA, Jensen H, Križanauskienė A, Lima MR, de Lope F, Magnussen E, Martin LB, Møller AP, Palinauskas V, Pap PL, Pérez-Tris J, Sehgal RN, Soler M, Szöllősi E, Westerdahl H, Zetindjiev P, Bensch S (2011) Diversity, loss, and gain of malaria parasites in a globally invasive bird. PLoS One 6(7):e21905. doi:10.1371/journal.pone.0021905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marzal A, Luz García-Longoria L, Cárdenas Callirgos JM, Sehgal RNM (2015) Invasive avian malaria as an emerging parasitic disease in native birds of Peru. Biol Invasion 17:39–45

    Article  Google Scholar 

  • Mehlhorn H, Peters W, Haberkorn A (1980) The formation of kinetes and oocyst in Plasmodium gallinaceum (Haemosporidia) and considerations on phylogenetic relationships between Haemosporidia, Piroplasmida and other Coccidia. Protistologica 16:135–154

    Google Scholar 

  • Møller AP, Nielsen JT (2007) Malaria and risk of predation: a comparative study of birds. Ecology 88:871–881

    Article  PubMed  Google Scholar 

  • Murata K, Nii R, Sasaki E, Ishikawa S, Sato Y, Sawabe K, Tsuda Y, Matsumoto R, Suda A, Ueda M (2008) Plasmodium (Bennettinia) juxtanucleare infection in a captive white eared-pheasant (Crossoptilon crossoptilon) at a Japanese zoo. J Vet Med Sci 70:203–205

    Article  PubMed  Google Scholar 

  • Palinauskas V, Kosarev V, Shapoval A, Bensch S, Valkiūnas G (2007) Comparison of mitochondrial cytochrome b gene lineages and morphospecies of two avian malaria parasites of the subgenera of Haemamoeba and Giovannolaia (Haemosporida: Plasmodiidae). Zootaxa 1626:39–50

    Google Scholar 

  • Palinauskas V, Valkiūnas G, Bolshakov CV, Bensch S (2008) Plasmodium relictum (lineage P-SGS1): effects on experimentally infected passerine birds. Exp Parasitol 120:372–380

    Article  PubMed  Google Scholar 

  • Palinauskas V, Dolnik OV, Valkiūnas G, Bensch S (2010) Laser microdissection microscopy and single cell PCR of avian hemosporidians. J Parasitol 96:420–424

    Article  CAS  PubMed  Google Scholar 

  • Palinauskas V, Žiegytė R, Ilgūnas M, Iezhova TA, Bernotienė R, Bolshakov C, Valkiūnas G (2015) Description of the first cryptic avian malaria parasite, Plasmodium homocircumflexum n. sp., with experimental data on its virulence and development in avian hosts and mosquitoes. Int J Parasitol 45:51–62

    Article  PubMed  Google Scholar 

  • Perkins SL (2014) Malaria’s many mates: past, present and future of the systematics of the order Haemosporida. J Parasitol 100:11–25

    Article  PubMed  Google Scholar 

  • Ricklefs RE, Fallon SM, Bermingham E (2004) Evolutionary relationships, cospeciation, and host switching in avian malaria parasites. Syst Biol 53:111–119

    Article  PubMed  Google Scholar 

  • Santiago-Alarcon D, Palinauskas V, Schaefer HH (2012) Diptera vectors of avian Haemosporidian parasites: untangling parasite life cycles and their taxonomy. Biol Rev 87:928–964

    Article  PubMed  Google Scholar 

  • Sherman IW (ed) (1998) Malaria: parasite biology, pathogenesis, and protection. American Society for Microbiology, Washington

  • Stone WB, Weber BL, Parks FJ (1971) Morbidity and mortality of birds due to avian malaria. N. Y. Fish Game J 18:62–63

    Google Scholar 

  • Valkiūnas G (2005) Avian malaria parasites and other Haemosporidia. CRC, Boca Raton

    Google Scholar 

  • Valkiūnas G, Zehtindjiev P, Hellgren O, Ilieva M, Iezhova TA, Bensch S (2007) Linkage between mitochondrial cytochrome b lineages and morphospecies of two avian malaria parasites, with a description of Plasmodium (Novyella) ashfordi sp. nov. Parasitol Res 100:1311–1322

    Article  PubMed  Google Scholar 

  • Valkiūnas G, Iezhova TA, Križanauskienė A, Palinauskas V, Bensch S (2008) A comparative analysis of microscopy and PCR-based detection methods for blood parasites. J Parasitol 94:1395–1401

    Article  PubMed  Google Scholar 

  • Valkiūnas G, Kazlauskienė R, Bernotienė R, Palinauskas V, Iezhova TA (2013) Abortive long-lasting sporogony of two Haemoproteus species (Haemosporida, Haemoproteidae) in the mosquito Ochlerotatus cantans, with perspectives on haemosporidian vector research. Parasitol Res 112:2159–2169

    Article  PubMed  Google Scholar 

  • Valkiūnas G, Palinauskas V, Ilgūnas M, Bukauskaitė D, Dimitrov D, Bernotienė R, Zehtindjiev P, Ilieva M, Iezhova TA (2014) Molecular characterization of five widespread avian haemosporidian parasites (Haemosporida), with perspectives on the PCR-based detection of haemosporidians in wildlife. Parasitol Res 113:2251–2263

    Article  PubMed  Google Scholar 

  • Valkiūnas G (2015) Haemoproteus. In: Mehlhorn H (ed) Encyclopedia of parasitology, 4th edn. Springer, Heidelberg

  • Vanstreels RE, Kolesnikovas CK, Sandri S, Silveira P, Belo NO, Ferreira Junior FC, Epiphanio S, Steindel M, Braga ÉM, Catão-Dias JL (2014) Outbreak of avian malaria associated to multiple species of Plasmodium in magellanic penguins undergoing rehabilitation in southern Brazil. PLoS One 9:e94994. doi:10.1371/journal.pone.0094994

    Article  PubMed Central  PubMed  Google Scholar 

  • Vézilier J, Nicot A, Gandon S, Rivero A (2010) Insecticide resistance and malaria transmission: infection rate and oocyst burden in Culex pipiens mosquitoes infected with Plasmodium relictum. Malar J 9:379. doi:10.1186/1475-2875-9-379

    Article  PubMed Central  PubMed  Google Scholar 

  • Vinogradova EB (2000) Mosquitoes Culex pipiens pipiens: taxonomy, distribution, ecology, physiology, genetics and control. PenSoft, Sofia

    Google Scholar 

  • Žiegytė R, Bernotienė R, Bukauskaitė D, Palinauskas V, Iezhova TA, Valkiūnas G (2014) Complete sporogony of Plasmodium relictum (lineages pSGS1 and pGRW11) in mosquito Culex pipiens pipiens form molestus, with implications to avian malaria epidemiology. J Parasitol 100:878–882

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the director of the Biological Station “Rybachy,” Casimir V. Bolshakov, for generously providing the facilities for the experimental research and the staff of the Biological Station “Rybachy” for assistance in the field. The authors are grateful to Dr. Roland Kuhn and Dr. Ana Rivero for providing samples of the C. p. pipiens f. molestus and C. quinquefasciatus mosquitoes, respectively, and Dr. Arūnas Bukantis for consultations on climatology. Data about long-term mean air degrees in Europe were provided by the Physical Science Division, Earth System Research Laboratory, NOAA, Boulder, Colorado, from their Web site at http://www.esrl.noaa.gov/psd/. Care and handling of experimental animals was in accordance with the current laws of Lithuania and Russia. This research was supported by the Open Access to research infrastructure of the Nature Research Centre under Lithuanian open access network initiative. Our sincere thanks to the Department of Molecular and Regenerative Medicine, Hematology, Oncology and Transfusion Medicine Centre of the Vilnius University Hospital Santariškių Klinikos for opportunities to use the laser microdissection microscope. This study was partly supported by the Lithuanian Science Foundation (award no. MIP-15022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gediminas Valkiūnas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valkiūnas, G., Žiegytė, R., Palinauskas, V. et al. Complete sporogony of Plasmodium relictum (lineage pGRW4) in mosquitoes Culex pipiens pipiens, with implications on avian malaria epidemiology. Parasitol Res 114, 3075–3085 (2015). https://doi.org/10.1007/s00436-015-4510-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4510-3

Keywords

Navigation