Skip to main content
Log in

Human subtelomeric copy number gains suggest a DNA replication mechanism for formation: beyond breakage–fusion–bridge for telomere stabilization

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Constitutional deletions of distal 9q34 encompassing the EHMT1 (euchromatic histone methyltransferase 1) gene, or loss-of-function point mutations in EHMT1, are associated with the 9q34.3 microdeletion syndrome, also known as Kleefstra syndrome [MIM#610253]. We now report further evidence for genomic instability of the subtelomeric 9q34.3 region as evidenced by copy number gains of this genomic interval that include duplications, triplications, derivative chromosomes and complex rearrangements. Comparisons between the observed shared clinical features and molecular analyses in 20 subjects suggest that increased dosage of EHMT1 may be responsible for the neurodevelopmental impairment, speech delay, and autism spectrum disorders revealing the dosage sensitivity of yet another chromatin remodeling protein in human disease. Five patients had 9q34 genomic abnormalities resulting in complex deletion–duplication or duplication–triplication rearrangements; such complex triplications were also observed in six other subtelomeric intervals. Based on the specific structure of these complex genomic rearrangements (CGR) a DNA replication mechanism is proposed confirming recent findings in Caenorhabditis elegans telomere healing. The end-replication challenges of subtelomeric genomic intervals may make them particularly prone to rearrangements generated by errors in DNA replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anand RP, Shah KA, Niu H, Sung P, Mirkin SM, Freudenreich CH (2012) Overcoming natural replication barriers: differential helicase requirements. Nucleic Acids Res 40:1091–1105

    Article  PubMed  CAS  Google Scholar 

  • Andreeva SV, Drozdova VD, Ponochevnaia EV, Kavardakova NV (2008) Rearrangements of chromosome 9 in different hematological neoplasia. Tsitol Genet 42:72–79

    PubMed  CAS  Google Scholar 

  • Bacolla A, Wells RD (2004) Non-B DNA conformations, genomic rearrangements, and human disease. J Biol Chem 279:47411–47414

    Article  PubMed  CAS  Google Scholar 

  • Ballif BC, Yu W, Shaw CA, Kashork CD, Shaffer LG (2003) Monosomy 1p36 breakpoint junctions suggest pre-meiotic breakage–fusion bridge cycles are involved in generating terminal deletions. Hum Mol Genet 12:2153–2165

    Article  PubMed  CAS  Google Scholar 

  • Ballif BC, Wakui K, Gajecka M, Shaffer LG (2004) Translocation breakpoint mapping and sequence analysis in three monosomy 1p36 subjects with der(1)t(1;1)(p36;q44) suggest mechanisms for telomere capture in stabilizing de novo terminal rearrangements. Hum Genet 114:198–206

    Article  PubMed  CAS  Google Scholar 

  • Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM, Eichler EE, Badge RM, Moran JV (2010) LINE-1 retrotransposition activity in human genomes. Cell 141:1159–1170

    Article  PubMed  CAS  Google Scholar 

  • Bonaglia MC, Giorda R, Mani E, Aceti G, Anderlid BM, Baroncini A, Pramparo T, Zuffardi O (2006) Identification of a recurrent breakpoint within the SHANK3 gene in the 22q133 deletion syndrome. J Med Genet 43:822–828

    Article  PubMed  CAS  Google Scholar 

  • Bonaglia MC, Giorda R, Beri S, De Agostini C, Novara F, Fichera M, Grillo L, Galesi O, Vetro A, Ciccone R, Bonati MT, Giglio S, Guerrini R, Osimani S, Marelli S, Zucca C, Grasso R, Borgatti R, Mani E, Motta C, Molteni M, Romano C, Greco D, Reitano S, Baroncini A, Lapi E, Cecconi A, Arrigo G, Patricelli MG, Pantaleoni C, D’Arrigo S, Riva D, Sciacca F, Dalla Bernardina B, Zoccante L, Darra F, Termine C, Maserati E, Bigoni S, Priolo E, Bottani A, Gimelli S, Bena F, Brusco A, di Gregorio E, Bagnasco I, Giussani U, Nitsch L, Politi P, Martinez-Frias ML, Martínez-Fernández ML, Martínez Guardia N, Bremer A, Anderlid BM, Zuffardi O (2011) Molecular mechanisms generating and stabilizing terminal 22q13 deletions in 44 subjects with Phelan/McDermid syndrome. PLoS Genet 7:e1002173

    Article  PubMed  CAS  Google Scholar 

  • Boone PM, Liu P, Zhang F, Carvalho CM, Towne CF, Batish SD, Lupski JR (2011) Alu-specific microhomology-mediated deletion of the final exon of SPAST in three unrelated subjects with hereditary spastic paraplegia. Genet Med 13:582–592

    Article  PubMed  Google Scholar 

  • Carvalho CM, Zhang F, Liu P, Patel A, Sahoo T, Bacino CA, Shaw C, Peacock S, Pursley A, Tavyev YJ, Ramocki MB, Nawara M, Obersztyn E, Vianna-Morgante AM, Stankiewicz P, Zoghbi HY, Cheung SW, Lupski JR (2009) Complex rearrangements in patients with duplications of MECP2 can occur by fork stalling and template switching. Hum Mol Genet 18:2188–2203

    Article  PubMed  CAS  Google Scholar 

  • Carvalho CM, Ramocki MB, Pehlivan D, Franco LM, Gonzaga-Jauregui C, Fang P, McCall A, Pivnick EK, Hines-Dowell S, Seaver LH, Friehling L, Lee S, Smith R, Del Gaudio D, Withers M, Liu P, Cheung SW, Belmont JW, Zoghbi HY, Hastings PJ, Lupski JR (2011) Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome. Nat Genet 43:1074–1081

    Article  PubMed  CAS  Google Scholar 

  • Cheung HC, Yatsenko SA, Kadapakkam M, Legay H, Su J, Lupski JR, Plon SE (2011) Constitutional tandem duplication of 9q34 that truncates EHMT1 in a child with ganglioglioma. Pediatr Blood Cancer. doi:101002/pbc23219

    Google Scholar 

  • Chiang C, Jacobsen JC, Ernst C, Hanscom C, Heilbut A, Blumenthal I, Mills RE, Kirby A, Lindgren AM, Rudiger SR, McLaughlan CJ, Bawden CS, Reid SJ, Faull RL, Snell RG, Hall IM, Shen Y, Ohsumi TK, Borowsky ML, Daly MJ, Lee C, Morton CC, MacDonald ME, Gusella JF, Talkowski ME (2012) Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat Genet 44:390–397

    Article  PubMed  CAS  Google Scholar 

  • D’Angelo CS, Gajecka M, Kim CA, Gentles AJ, Glotzbach CD, Shaffer LG, Koiffmann CP (2009) Further delineation of nonhomologous-based recombination and evidence for subtelomeric segmental duplications in 1p36 rearrangements. Hum Genet 125:551–563

    Article  PubMed  Google Scholar 

  • Dave BJ, Wiggins M, Higgins CM, Pickering DL, Perry D, Aoun P, Abromowich M, DeVetten M, Sanger WG (2005) 9q34 rearrangements in BCR/ABL fusion-negative acute lymphoblastic leukemia. Cancer Genet Cytogenet 162:30–37

    Article  PubMed  CAS  Google Scholar 

  • Devriendt K, Matthijs G, Holvoet M, Schoenmakers E, Fryns JP (1999) Triplication of distal chromosome 10q. J Med Genet 36:242–245

    PubMed  CAS  Google Scholar 

  • Drosopoulos WC, Kosiyatrakul ST, Yan Z, Calderano SG, Schildkraut CL (2012) Human telomeres replicate using chromosome-specific, rather than universal, replication programs. J Cell Biol 197:253–266

    Article  PubMed  CAS  Google Scholar 

  • Ewing AD, Kazazian HH (2010) High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Res 20:1262–1270

    Article  PubMed  CAS  Google Scholar 

  • Flint J, Craddock CF, Villegas A, Bentley DP, Williams HJ, Galanello R, Cao A, Wood WG, Ayyub H, Higgs DR (1994) Healing of broken human chromosomes by the addition of telomeric repeats. Am J Hum Genet 55:505–512

    PubMed  CAS  Google Scholar 

  • Flint J, Rochette J, Craddock CF, Dode C, Vignes B, Horsley SW, Kearney L, Buckle VJ, Ayyub H, Higgs DR (1996) Chromosomal stabilization by a subtelomeric rearrangement involving two closely related Alu elements. Hum Mol Genet 5:1163–1169

    Article  PubMed  CAS  Google Scholar 

  • Gijsbers AC, Bijlsma EK, Weiss MM, Bakker E, Breuning MH, Hoffer MJ, Ruivenkamp CA (2008) A 400 kb duplication, 24 Mb triplication and 130 kb duplication of 9q343 in a patient with severe mental retardation. Eur J Med Genet 51:479–487

    Article  PubMed  Google Scholar 

  • Harrison KJ, Teshima IE, Silver MM, Jay V, Unger S, Robinson WP, James A, Levin A, Chitayat D (1998) Partial tetrasomy with triplication of chromosome (5)(p14–15.33) in a patient with severe multiple congenital anomalies. Am J Med Genet 79:103–107

    Article  PubMed  CAS  Google Scholar 

  • Hastings PJ, Ira G, Lupski JR (2009a) A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 5:e1000327

    Article  PubMed  CAS  Google Scholar 

  • Hastings PJ, Lupski JR, Rosenberg SM, Ira G (2009b) Mechanisms of change in gene copy number. Nat Rev Genet 10:551–564

    Article  PubMed  CAS  Google Scholar 

  • Huang CRL, Schneider AM, Lu Y, Niranjan T, Shen P, Robinson MA, Steranka JP, Valle D, Civin CI, Wang T, Wheelan SJ, Ji H, Boeke JD, Burns KH (2010) Mobile interspersed repeats are major structural variants in the human genome. Cell 141:1171–1182

    Article  PubMed  CAS  Google Scholar 

  • Iskow RC, McCabe MT, Mills RE, Torene S, Pittard WS, Neuwald AF, Van Meir EG, Vertino PM, Devine SE (2010) Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141:1253–1261

    Article  PubMed  CAS  Google Scholar 

  • Kleefstra T, Koolen DA, Nillesen WM, de Leeuw N, Hamel BC, Veltman JA, Sistermans EA, van Bokhoven H, van Ravenswaay C, de Vries BB (2006) Interstitial 2.2 Mb deletion at 9q34 in a patient with mental retardation but without classical features of the 9q subtelomeric deletion syndrome. Am J Med Genet A 140:618–623

    PubMed  Google Scholar 

  • Lamb J, Harris PC, Wilkie AO, Wood WG, Dauwerse JG, Higgs DR (1993) De novo truncation of chromosome 16p and healing with (TTAGGG)n in the alpha thalassemia/mental retardation syndrome (ATP-16). Am J Hum Genet 52:668–676

    PubMed  CAS  Google Scholar 

  • Ledbetter DH, Martin CL (2007) Cryptic telomere imbalance: a 15-year update. Am J Med Genet C Semin Med Genet 145C:327–334

    Article  PubMed  CAS  Google Scholar 

  • Lee JA, Carvalho CM, Lupski JR (2007) DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131:1235–1247

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Erez A, Nagamani SC, Dhar SU, Kołodziejska KE, Dharmadhikari AV, Cooper ML, Wiszniewska J, Zhang F, Withers MA, Bacino CA, Campos-Acevedo LD, Delgado MR, Freedenberg D, Garnica A, Grebe TA, Hernández-Almaguer D, Immken L, Lalani SR, McLean SD, Northrup H, Scaglia F, Strathearn L, Trapane P, Kang SH, Patel A, Cheung SW, Hastings PJ, Stankiewicz P, Lupski JR, Bi W (2011) Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146:889–903

    Article  PubMed  CAS  Google Scholar 

  • Lowden MR, Flibotte S, Moerman DG, Ahmed S (2011) DNA synthesis generates terminal duplications that seal end-to-end chromosome fusions. Science 332:468–471

    Article  PubMed  CAS  Google Scholar 

  • Lupski JR (1998) Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 14:417–422

    Article  PubMed  CAS  Google Scholar 

  • Lupski JR (2009) Genomic disorders ten years on. Genome Med 1:42

    Article  PubMed  Google Scholar 

  • Lupski JR (2010) Retrotransposition and structural variation in the human genome. Cell 141:1110–1112

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26:234–282

    PubMed  CAS  Google Scholar 

  • Mirkin EV, Mirkin SM (2007) Replication fork stalling at natural impediments. Microbiol Mol Biol Rev 71:13–35

    Article  PubMed  CAS  Google Scholar 

  • Moser BA, Subramanian L, Chang YT, Noguchi C, Noguchi E, Nakamura TM (2009) Differential arrival of leading and lagging strand DNA polymerases at fission yeast telomeres. EMBO J 28:810–820

    Article  PubMed  CAS  Google Scholar 

  • Rauch A, Pfeiffer RA, Trautmann U (1996) Deletion or triplication of the a3(VI) collagen gene in three patients with 2q37 chromosome aberrations and symptoms of collagen-related disorders. Clin Genet 49:279–285

    Article  PubMed  CAS  Google Scholar 

  • Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, González JR, Gratacòs M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Zhang J, Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME (2006) Global variation in copy number in the human genome. Nature 444:444–454

    Article  PubMed  CAS  Google Scholar 

  • Ricard G, Molina J, Chrast J, Gu W, Gheldof N, Pradervand S, Schütz F, Young JI, Lupski JR, Reymond A, Walz K (2010) Phenotypic consequences of copy number variation: insights from Smith-Magenis and Potocki-Lupski syndrome mouse models. PLoS Biol 8:e1000543

    Article  PubMed  Google Scholar 

  • Rivera H, Bobadilla L, Rolon A, Kunz J, Crolla JA (1998) Intrachromosomal triplication of distal 7p. J Med Genet 35:78–80

    Article  PubMed  CAS  Google Scholar 

  • Shao L, Shaw CA, Lu XY, Sahoo T, Bacino CA, Lalani SR, Stankiewicz P, Yatsenko SA, Li Y, Neill S, Pursley AN, Chinault AC, Patel A, Beaudet AL, Lupski JR, Cheung SW (2008) Identification of chromosome abnormalities in subtelomeric regions by microarray analysis: a study of 5,380 cases. Am J Med Genet 146A:2242–2251

    Article  PubMed  Google Scholar 

  • Shimojima K, Mano T, Kashiwagi M, Tanabe T, Sugawara M, Okamoto N, Arai H, Yamamoto T (2012) Pelizaeus-Merzbacher disease caused by a duplication-inverted triplication-duplication in chromosomal segments including the PLP1 region. Eur J Med Genet 55:400–403

    Article  PubMed  Google Scholar 

  • Simovich MJ, Yatsenko SA, Kang S-HL, Cheung SW, Dudek ME, Pursley A, Ward PA, Patel A, Lupski JR (2007) Prenatal diagnosis of a 9q343 microdeletion by array-CGH in a fetus with an apparently balanced translocation. Prenat Diagn 27:1112–1117

    Article  PubMed  Google Scholar 

  • Stankiewicz P, Lupski JR (2002) Genome architecture, rearrangements and genomic disorders. Trends Genet 18:74–82

    Article  PubMed  CAS  Google Scholar 

  • Talkowski ME, Rosenfeld JA, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A, Ernst C, Hanscom C, Rossin E, Lindgren AM, Pereira S, Ruderfer D, Kirby A, Ripke S, Harris DJ, Lee JH, Ha K, Kim HG, Solomon BD, Gropman AL, Lucente D, Sims K, Ohsumi TK, Borowsky ML, Loranger S, Quade B, Lage K, Miles J, Wu BL, Shen Y, Neale B, Shaffer LG, Daly MJ, Morton CC, Gusella JF (2012) Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 149:525–537

    Article  PubMed  CAS  Google Scholar 

  • Varga T, Aplan PD (2005) Chromosomal aberrations induced by double strand DNA breaks. DNA Repair (Amst) 4:1038–1046

    Article  CAS  Google Scholar 

  • Varley H, Di S, Scherer SW, Royle NJ (2000) Characterization of terminal deletions at 7q32 and 22q133 healed by de novo telomere addition. Am J Hum Genet 67:610–622

    Article  PubMed  CAS  Google Scholar 

  • Verdun RE, Karlseder J (2007) Replication and protection of telomeres. Nature 447:924–931

    Article  PubMed  CAS  Google Scholar 

  • Watson JD (1972) Origin of concatemeric T7 DNA. Nat New Biol 239(94):197–201

    PubMed  CAS  Google Scholar 

  • Wilkie AO, Lamb J, Harris PC, Finney RD, Higgs DR (1990) A truncated human chromosome 16 associated with alpha thalassaemia is stabilized by the addition of telomeric repeats (TTAGGG)n. Nature 346:868–871

    Article  PubMed  CAS  Google Scholar 

  • Yatsenko SA, Cheung SW, Scott DA, Nowaczyk MJ, Tarnopolsky M, Naidu S, Bibat G, Patel A, Leroy JG, Scaglia F, Stankiewicz P, Lupski JR (2005) Deletion 9q343 syndrome: genotype-phenotype correlations and an extended deletion in a patient with features of Opitz C trigonocephaly. J Med Genet 42:328–335

    Article  PubMed  CAS  Google Scholar 

  • Yatsenko SA, Brundage EK, Roney EK, Cheung SW, Chinault AC, Lupski JR (2009a) Molecular mechanisms for subtelomeric rearrangements associated with the 9q343 microdeletion syndrome. Hum Mol Genet 18:1924–1936

    Article  PubMed  CAS  Google Scholar 

  • Yatsenko SA, Shaw CA, Ou Z, Pursley AN, Patel A, Bi W, Cheung SW, Lupski JR, Chinault AC, Beaudet AL (2009b) Microarray-based comparative genomic hybridization using sex-matched reference DNA provides greater sensitivity for detection of sex chromosome imbalances than array-comparative genomic hybridization with sex-mismatched reference DNA. J Mol Diagn 11:226–237

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Carvalho CM, Lupski JR (2009a) Complex human chromosomal and genomic rearrangements. Trends Genet 25:298–307

    Article  PubMed  Google Scholar 

  • Zhang F, Khajavi M, Connolly AM, Towne CF, Batish SD, Lupski JR (2009b) The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans. Nat Genet 41:849–853

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Seeman P, Liu P, Weterman MA, Gonzaga-Jauregui C, Towne CF, Batish SD, De Vriendt E, De Jonghe P, Rautenstrauss B, Krause KH, Khajavi M, Posadka J, Vandenberghe A, Palau F, Van Maldergem L, Baas F, Timmerman V, Lupski JR (2010) Mechanisms for nonrecurrent genomic rearrangements associated with CMT1A or HNPP: rare CNVs as a cause for missing heritability. Am J Hum Genet 86:892–903

    Article  PubMed  CAS  Google Scholar 

  • Zuffardi O, Bonaglia M, Ciccone R, Giorda R (2009) Inverted duplications deletions: underdiagnosed rearrangements? Clin Genet 75:505–513

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to the families for their cooperation. This study was supported in part by grants the IDDRC (Intellectual and Developmental Disabilities Research Center (P30 HD024064) and the National Institute of Neurological Disorders and Stroke (R01 NS058529) to JRL.

Conflict of interest

J.R.L is a consultant for Athena Diagnostics, owns stock in 23andMe and Ion Torrent Systems Inc., and is a co-inventor on multiple US and European patents for DNA diagnostics. Furthermore, the Department of Molecular and Human Genetics at Baylor College of Medicine derives revenue from molecular diagnostic testing (MGL, http://www.bcm.edu/geneticlabs/).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Svetlana A. Yatsenko or James R. Lupski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yatsenko, S.A., Hixson, P., Roney, E.K. et al. Human subtelomeric copy number gains suggest a DNA replication mechanism for formation: beyond breakage–fusion–bridge for telomere stabilization. Hum Genet 131, 1895–1910 (2012). https://doi.org/10.1007/s00439-012-1216-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-012-1216-9

Keywords

Navigation