Skip to main content
Log in

Common variants in genes of the postsynaptic FMRP signalling pathway are risk factors for autism spectrum disorders

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Autism spectrum disorders (ASD) are heterogeneous disorders with a high heritability and complex genetic architecture. Due to the central role of the fragile X mental retardation gene 1 protein (FMRP) pathway in ASD we investigated common functional variants of ASD risk genes regulating FMRP. We genotyped ten SNPs in two German patient sets (N = 192 and N = 254 families, respectively) and report association for rs7170637 (CYFIP1; set 1 and combined sets), rs6923492 (GRM1; combined sets), and rs25925 (CAMK4; combined sets). An additional risk score based on variants with an odds ratio (OR) >1.25 in set 1 and weighted by their respective log transmitted/untransmitted ratio revealed a significant effect (OR 1.30, 95 % CI 1.11–1.53; P = 0.0013) in the combined German sample. A subsequent meta-analysis including the two German samples, the “Strict/European” ASD subsample of the Autism Genome Project (1,466 families) and a French case/control (541/366) cohort showed again association of rs7170637-A (OR 0.85, 95 % CI 0.75–0.96; P = 0.007) and rs25925-G (OR 1.31, 95 % CI 1.04–1.64; P = 0.021) with ASD. Functional analyses revealed that these minor alleles predicted to alter splicing factor binding sites significantly increase levels of an alternative mRNA isoform of the respective gene while keeping the overall expression of the gene constant. These findings underpin the role of ASD candidate genes in postsynaptic FMRP regulation suggesting that an imbalance of specific isoforms of CYFIP1, an FMRP interaction partner, and CAMK4, a transcriptional regulator of the FMRP gene, modulates ASD risk. Both gene products are related to neuronal regulation of synaptic plasticity, a pathomechanism underlying ASD and may thus present future targets for pharmacological therapies in ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ASD:

Autism spectrum disorders

AGP:

Autism genome project

SNP:

Single nucleotide polymorphism

MAF:

Minor allele frequency

LD:

Linkage disequilibrium

TDT:

Transmission disequilibrium test

OR:

Odds ratio

CI:

Confidence interval

SD:

Standard deviation

CNV:

Copy number variation

CYFIP1 :

Cytoplasmic FMR1 interacting protein 1

FXS:

Fragile X syndrome

TSC:

Tuberous sclerosis

FMR1:

Fragile X mental retardation gene1

FMRP:

FMR1 protein

GRM1/5 :

Metabotropic glutamate receptor 1 and 5

CAMK4 :

Calcium/calmodulin-dependent protein kinase 4

GUSB :

Beta-d-glucuronidase

LTD:

Long-term depression

LTP:

Long-term potentiation

ESE:

Exonic splicing enhancer

AS:

Alternatively spliced isoforms

WRC:

WAVE regulatory complex

eQTL:

Expression quantitative trait locus

TFBS:

Transcription factor binding site

ASF/SF2:

Serine/arginine-rich splicing factor 1

SC35:

Serine/arginine-rich splicing factor 2

SRP55:

Serine/arginine-rich splicing factor 6

References

  • Abrahams BS, Geschwind DH (2008) Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9(5):341–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders (DSM-IV-TR), 4th edn. Text revision. APA, Washington, DC

    Book  Google Scholar 

  • Anney R, Klei L, Pinto D et al (2010) A genome-wide scan for common alleles affecting risk for autism. Hum Mol Genet 19(20):4072–4082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anney R, Klei L, Pinto D et al (2012) Individual common variants exert weak effects on the risk for autism spectrum disorders. Hum Mol Genet 21(21):4781–4792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagni C, Tassone F, Neri G, Hagerman R (2012) Fragile X syndrome: causes, diagnosis, mechanisms, and therapeutics. J Clin Invest 122(12):4314–4322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265

    Article  CAS  PubMed  Google Scholar 

  • Bassell GJ, Warren ST (2008) Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60(2):201–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baudouin SJ, Gaudias J, Gerharz S, Hatstatt L, Zhou K, Punnakkal P, Tanaka KF, Spooren W, Hen R, de Zeeuw CI, Vogt K, Scheiffele P (2012) Shared synaptic pathophysiology in syndromic and nonsyndromic rodent models of autism. Science 338(6103):128–132

    Article  CAS  PubMed  Google Scholar 

  • Ben-David E, Shifman S, Gibson G (2012) Networks of neuronal genes affected by common and rare variants in autism spectrum disorders. PLoS Genet 8(3):e1002556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betancur C (2011) Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res 1380:42–77

    Article  CAS  PubMed  Google Scholar 

  • Bölte S, Poustka F (2004) Diagnostic Observation Scale for Autistic Disorders (ADOS): initial results of reliability and validity. Z Kinder Jugendpsychiatr Psychother 32:45–50

    Article  PubMed  Google Scholar 

  • Bozdagi O, Sakurai T, Dorr N, Pilorge M, Takahashi N, Buxbaum JD, Dawson TM (2012) Haploinsufficiency of Cyfip1 produces fragile X-like phenotypes in mice. PLoS One 7(8):e42422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cartegni L, Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR (2003) ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 31(13):3568–3571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordell HJ (2004) Properties of case/pseudocontrol analysis for genetic association studies: effects of recombination, ascertainment, and multiple affected offspring. Genet Epidemiol 26(3):186–205

    Article  PubMed  Google Scholar 

  • Curatolo P, Napolioni V, Moavero R (2010) Autism spectrum disorders in tuberous sclerosis: pathogenic pathways and implications for treatment. J Child Neurol 25:873–880

    Article  PubMed  Google Scholar 

  • Darnell JC, Van Driesche SJ, Zhang C, Hung KYS, Mele A, Fraser CE, Stone EF, Chen C, Fak JJ, Chi SW, Licatalosi DD, Richter JD, Darnell RB, van Driesche SJ (2011) FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146(2):247–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Rubeis S, Bagni C (2011) Regulation of molecular pathways in the fragile X syndrome: insights into autism spectrum disorders. J Neurodevelop Disord 3(3):257–269

    Article  Google Scholar 

  • de Vries PJ (2010) Targeted treatments for cognitive and neurodevelopmental disorders in tuberous sclerosis complex. Neurotherapeutics 7(3):275–282

    Article  PubMed  Google Scholar 

  • Devlin B, Scherer SW (2012) Genetic architecture in autism spectrum disorder. Curr Opin Genet Dev 22(3):229–237

    Article  CAS  PubMed  Google Scholar 

  • Dixon AL, Liang L, Moffatt MF, Chen W, Heath S, Wong KCC, Taylor J, Burnett E, Gut I, Farrall M, Lathrop GM, Abecasis GR, Cookson WOC (2007) A genome-wide association study of global gene expression. Nat Genet 39(10):1202–1207

    Article  CAS  PubMed  Google Scholar 

  • Dölen G, Bear MF (2008) Role for metabotropic glutamate receptor 5 (mGluR5) in the pathogenesis of fragile X syndrome. J Physiol (Lond) 586(6):1503–1508

    Article  Google Scholar 

  • Dudbridge F (2008) Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data. Hum Hered 66(2):87–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Durand CM, Perroy J, Loll F, Perrais D, Fagni L, Bourgeron T, Montcouquiol M, Sans N (2012) SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actin-dependent mechanism. Mol Psychiatry 17(1):71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebert DH, Greenberg ME (2013) Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493(7432):327–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elia J, Gai X, Xie HM, Perin JC, Geiger E, Glessner JT, D’arcy M, deBerardinis R, Frackelton E, Kim C, Lantieri F, Muganga BM, Wang L, Takeda T, Rappaport EF, Grant SFA, Berrettini W, Devoto M, Shaikh TH, Hakonarson H, White PS (2010) Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes. Mol Psychiatry 15(6):637–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fatemi SH, Folsom TD, Kneeland RE, Liesch SB (2011) Metabotropic glutamate receptor 5 upregulation in children with autism is associated with underexpression of both fragile X mental retardation protein and GABAA receptor beta 3 in adults with autism. Anat Rec 294(10):1635–1645

    Article  CAS  Google Scholar 

  • Feliciano DM, Edelman AM, Feliciano DM, Edelman AM (2009) Repression of Ca2+/calmodulin-dependent protein kinase IV signaling accelerates retinoic acid-induced differentiation of human neuroblastoma cells. J Biol Chem 284(39):26466–26481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freitag CM, Staal W, Klauck SM, Duketis E, Waltes R (2010) Genetics of autistic disorders: review and clinical implications. Eur Child Adolesc Psychiatry 19(3):169–178

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabut M, Miné M, Marsac C, Brivet M, Tazi J, Soret J (2005) The SR protein SC35 is responsible for aberrant splicing of the E1alpha pyruvate dehydrogenase mRNA in a case of mental retardation with lactic acidosis. Mol Cell Biol 25(8):3286–3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gai X, Xie HM, Perin JC, Takahashi N, Murphy K, Wenocur AS, D’arcy M, O’Hara RJ, Goldmuntz E, Grice DE, Shaikh TH, Hakonarson H, Buxbaum JD, Elia J, White PS (2012) Rare structural variation of synapse and neurotransmission genes in autism. Mol Psychiatry 17(4):402–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauderman WJ (2002) Sample size requirements for association studies of gene–gene interaction. Am J Epidemiol 155(5):478–484

    Article  PubMed  Google Scholar 

  • Graveley BR (2000) Sorting out the complexity of SR protein functions. RNA 6(9):1197–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez R, Hung J, Zhang Y, Kertesz A, Espina F, Colicos M, Gutierrez RC, Kertesz AC, Espina FJ, Colicos MA (2009) Altered synchrony and connectivity in neuronal networks expressing an autism-related mutation of neuroligin 3. Neuroscience 162(1):208–221

    Article  CAS  PubMed  Google Scholar 

  • Ho N, Liauw JA, Blaeser F, Wei F, Hanissian S, Muglia LM, Wozniak DF, Nardi A, Arvin KL, Holtzman DM, Linden DJ, Zhuo M, Muglia LJ, Chatila TA (2000) Impaired synaptic plasticity and cAMP response element-binding protein activation in Ca2+/calmodulin-dependent protein kinase type IV/Gr-deficient mice. J Neurosci 20(17):6459–6472

    CAS  PubMed  Google Scholar 

  • Kalkman HO (2012) A review of the evidence for the canonical Wnt pathway in autism spectrum disorders. Mol Autism 3(1):10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelleher RJ III, Bear MF (2008) The autistic neuron: troubled translation? Cell 135(3):401–406

    Article  CAS  PubMed  Google Scholar 

  • Kelleher RJ III, Geigenmüller U, Hovhannisyan H, Trautman E, Pinard R, Rathmell B, Carpenter R, Margulies D, Esteban FJ, Kelleher RJ (2012) High-throughput sequencing of mGluR signaling pathway genes reveals enrichment of rare variants in autism. PLoS One 7(4):e35003

    Article  CAS  PubMed  Google Scholar 

  • Klauck SM, Poustka F, Benner A, Lesch KP, Poustka A (1997) Serotonin transporter (5-HTT) gene variants associated with autism? Hum Mol Genet 6(13):2233–2238

    Article  CAS  PubMed  Google Scholar 

  • Klei L, Sanders SJ, Murtha MT, Hus V, Lowe JK, Willsey AJ, Moreno-De-Luca D, Yu TW, Fombonne E, Geschwind D, Grice DE, Ledbetter DH, Lord C, Mane SM, Lese Martin C, Martin DM, Morrow EM, Walsh CA, Melhem NM, Chaste P, Sutcliffe JS, State MW, Cook EH, Roeder K, Devlin B (2012) Common genetic variants, acting additively, are a major source of risk for autism. Mol Autism 3(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  • Knapp M (2008) Estimating relative risks from significant family-based association studies. Hum Hered 66(2):111–121

    Article  PubMed  Google Scholar 

  • Krueger DD, Bear MF (2011) Toward fulfilling the promise of molecular medicine in fragile X syndrome. Annu Rev Med 62:411–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leblond CS, Heinrich J, Delorme R, Proepper C, Betancur C, Huguet G, Konyukh M, Chaste P, Ey E, Rastam M, Anckarsäter H, Nygren G, Gillberg IC, Melke J, Toro R, Regnault B, Fauchereau F, Mercati O, Lemière N, Skuse D, Poot M, Holt R, Monaco AP, Järvelä I, Kantojärvi K, Vanhala R, Curran S, Collier DA, Bolton P, Chiocchetti A, Klauck SM, Poustka F, Freitag CM, Waltes R, Kopp M, Duketis E, Bacchelli E, Minopoli F, Ruta L, Battaglia A, Mazzone L, Maestrini E, Sequeira AF, Oliveira B, Vicente A, Oliveira G, Pinto D, Scherer SW, Zelenika D, Delepine M, Lathrop M, Bonneau D, Guinchat V, Devillard F, Assouline B, Mouren M, Leboyer M, Gillberg C, Boeckers TM, Bourgeron T, State M (2012) Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders. PLoS Genet 8(2):e1002521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemrow SM, Anderson KA, Joseph JD, Ribar TJ, Noeldner PK, Means AR (2004) Catalytic activity is required for calcium/calmodulin-dependent protein kinase IV to enter the nucleus. J Biol Chem 279(12):11664–11671

    Article  CAS  PubMed  Google Scholar 

  • Lichtenstein P, Carlström E, Råstam M, Gillberg C, Anckarsäter H (2010) The genetics of autism spectrum disorders and related neuropsychiatric disorders in childhood. Am J Psychiatry 167(11):1357–1363

    Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lord C, Rutter M, Le Couteur A (1994) Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 24(5):659–685

    Article  CAS  PubMed  Google Scholar 

  • Lord C, Risi S, Lambrecht L, Cook EH, Leventhal BL, DiLavore PC, Pickles A, Rutter M (2000) The Autism Diagnostic Observation Schedule-Generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 30(3):205–223

    Article  CAS  PubMed  Google Scholar 

  • Lüscher C, Huber KM (2010) Group 1 mGluR-dependent synaptic long-term depression: mechanisms and implications for circuitry and disease. Neuron 65(4):445–459

    Article  PubMed  PubMed Central  Google Scholar 

  • Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Maccarrone G, Dias-Neto E, Turck CW (2009) Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia. Eur Arch Psychiatry Clin Neurosci 259(3):151–163

    Article  PubMed  Google Scholar 

  • Matthews RP, Guthrie CR, Wailes LM, Zhao X, Means AR, McKnight GS (1994) Calcium/calmodulin-dependent protein kinase types II and IV differentially regulate CREB-dependent gene expression. Mol Cell Biol 14(9):6107–6116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JPA, Hirschhorn JN (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9(5):356–369

    Article  CAS  PubMed  Google Scholar 

  • Michlewski G, Sanford JR, Cáceres JF (2008) The splicing factor SF2/ASF regulates translation initiation by enhancing phosphorylation of 4E-BP1. Mol Cell 30(2):179–189

    Article  CAS  PubMed  Google Scholar 

  • Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, Depner M, von Berg A, Bufe A, Rietschel E, Heinzmann A, Simma B, Frischer T, Willis-Owen SAG, Wong KCC, Illig T, Vogelberg C, Weiland SK, von Mutius E, Abecasis GR, Farrall M, Gut IG, Lathrop GM, Cookson WOC (2007) Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448(7152):470–473

    Article  CAS  PubMed  Google Scholar 

  • Munesue T, Yokoyama S, Nakamura K, Anitha A, Yamada K, Hayashi K, Asaka T, Liu H, Jin D, Koizumi K, Islam MS, Huang J, Ma W, Kim U, Kim S, Park K, Kim D, Kikuchi M, Ono Y, Nakatani H, Suda S, Miyachi T, Hirai H, Salmina A, Pichugina YA, Soumarokov AA, Takei N, Mori N, Tsujii M, Sugiyama T, Yagi K, Yamagishi M, Sasaki T, Yamasue H, Kato N, Hashimoto R, Taniike M, Hayashi Y, Hamada J, Suzuki S, Ooi A, Noda M, Kamiyama Y, Kido MA, Lopatina O, Hashii M, Amina S, Malavasi F, Huang EJ, Zhang J, Shimizu N, Yoshikawa T, Matsushima A, Minabe Y, Higashida H (2010) Two genetic variants of CD38 in subjects with autism spectrum disorder and controls. Neurosci Res 67(2):181–191

    Article  CAS  PubMed  Google Scholar 

  • Napoli I, Mercaldo V, Boyl PP, Eleuteri B, Zalfa F, de Rubeis S, Di Marino D, Mohr E, Massimi M, Falconi M, Witke W, Costa-Mattioli M, Sonenberg N, Achsel T, Bagni C (2008) The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell 134(6):1042–1054

    Article  CAS  PubMed  Google Scholar 

  • Narayanan U, Nalavadi V, Nakamoto M, Pallas DC, Ceman S, Bassell GJ, Warren ST (2007) FMRP phosphorylation reveals an immediate-early signaling pathway triggered by group I mGluR and mediated by PP2A. J Neurosci 27(52):14349–14357

    Article  CAS  PubMed  Google Scholar 

  • Nishimura Y, Martin CL, Vazquez-Lopez A, Spence SJ, Alvarez-Retuerto AI, Sigman M, Steindler C, Pellegrini S, Schanen NC, Warren ST, Geschwind DH (2007) Genome-wide expression profiling of lymphoblastoid cell lines distinguishes different forms of autism and reveals shared pathways. Hum Mol Genet 16(14):1682–1698

    Article  CAS  PubMed  Google Scholar 

  • Nowicki ST, Tassone F, Ono MY, Ferranti J, Croquette MF, Goodlin-Jones B, Hagerman RJ (2007) The Prader–Willi phenotype of fragile X syndrome. J Dev Behav Pediatr 28(2):133–138

    Article  PubMed  Google Scholar 

  • Pinto D, Pagnamenta AT, Klei L et al (2010) Functional impact of global rare copy number variation in autism spectrum disorder. Nature 466(7304):368–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poustka F, Lisch S, Rühl D, Sacher A, Schmötzer G, Werner K (1996) The standardized diagnosis of autism, Autism Diagnostic Interview-Revised: interrater reliability of the German form of the interview. Psychopathology 29(3):145–153

    Article  CAS  PubMed  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC, Ferreira MAR, de Bakker PIW (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • SAS Institute Inc. (2009) SAS/STAT® 9.2 user’s guide. SAS Institute Inc., Cary

    Google Scholar 

  • Schenck A, Bardoni B, Langmann C, Harden N, Mandel JL, Giangrande A (2003) CYFIP1/Sra-1 controls neuronal connectivity in CYFIP/Sra-1 controls neuronal connectivity in Drosophila and links the Rac1 GTPase pathway to the fragile X protein. Neuron 38(6):887–898

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Sassone-Corsi P, Means AR (1995) Calspermin gene transcription is regulated by two cyclic AMP response elements contained in an alternative promoter in the calmodulin kinase IV gene. Mol Cell Biol 15(1):561–571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szatmari P, Paterson AD, Zwaigenbaum L et al (2007) Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 39(3):319–328

    Article  CAS  PubMed  Google Scholar 

  • Thomas AM, Bui N, Graham D, Perkins JR, Yuva-Paylor LA, Paylor R (2011) Genetic reduction of group 1 metabotropic glutamate receptors alters select behaviors in a mouse model for fragile X syndrome. Behav Brain Res 223(2):310–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toro R, Konyukh M, Delorme R, Leblond C, Chaste P, Fauchereau F, Coleman M, Leboyer M, Gillberg C, Bourgeron T (2010) Key role for gene dosage and synaptic homeostasis in autism spectrum disorders. Trends Genet 26(8):363–372

    Article  CAS  PubMed  Google Scholar 

  • van der Zwaag B, Staal WG, Hochstenbach R, Poot M, Spierenburg HA, de Jonge MV, Verbeek NE, vant Slot R, van Es MA, Staal FJ, Freitag CM, Buizer-Voskamp JE, Nelen MR, van den Berg LH, van Amstel HKP, van Engeland H, Burbach JPH (2010) A co-segregating microduplication of chromosome 15q11.2 pinpoints two risk genes for autism spectrum disorder. Am J Med Genet B Neuropsychiatr Genet 153(4):960–966

    Google Scholar 

  • Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65(5):905–914

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wu L, Zhang F, Zhuo M (2008) Roles of calcium-stimulated adenylyl cyclase and calmodulin-dependent protein kinase IV in the regulation of FMRP by group I metabotropic glutamate receptors. J Neurosci 28(17):4385–4397

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Fukushima H, Kida S, Zhuo M (2009) Ca2+/calmodulin-dependent protein kinase IV links group I metabotropic glutamate receptors to fragile X mental retardation protein in cingulate cortex. J Biol Chem 284(28):18953–18962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, McCoy PA, Rodriguiz RM, Pan Y, Je HS, Roberts AC, Kim CJ, Berrios J, Colvin JS, Bousquet-Moore D, Lorenzo I, Wu G, Weinberg RJ, Ehlers MD, Philpot BD, Beaudet AL, Wetsel WC, Jiang Y, Wang X, McCoy PA, Rodriguiz RM, Pan Y, Je HS, Roberts AC, Kim CJ, Berrios J, Colvin JS, Bousquet-Moore D, Lorenzo I, Wu G, Weinberg RJ, Ehlers MD, Philpot BD, Beaudet AL, Wetsel WC, Jiang Y (2011) Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet 20(15):3093–3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waung MW, Huber KM (2009) Protein translation in synaptic plasticity: mGluR-LTD, fragile X. Curr Opin Neurobiol 19(3):319–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (1993) The ICD-10 classification of mental and behavioural disorders. Diagnostic criteria for research, 10th edn. WHO, Geneva

    Google Scholar 

  • Wu JY, Means AR (2000) Ca(2+)/calmodulin-dependent protein kinase IV is expressed in spermatids and targeted to chromatin and the nuclear matrix. J Biol Chem 275(11):7994–7999

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Ma L, Wu Y, Zeng R, Zhu X (2012) Nudel is crucial for the WAVE complex assembly in vivo by selectively promoting subcomplex stability and formation through direct interactions. Cell Res 22(8):1270–1284

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu J, Hai Y, Liu G, Fang T, Kung SKP, Xie J (2009) The heterogeneous nuclear ribonucleoprotein L is an essential component in the Ca2+/calmodulin-dependent protein kinase IV-regulated alternative splicing through cytidine–adenosine repeats. J Biol Chem 284(3):1505–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank all patients and their families for taking part in this study. In addition, we thoroughly thank Veronika Delcheva, Silvia Lindlar, Marnie Kopp, Hiacynta Jelen and Cornelia Wirth for excellent technical assistance and Heiko Zerlaut and Rusico Weber for database management. This work was supported by the Saarland University (T6 03 10 00-45 to C.M.F.); the Deutsche Forschungsgemeinschaft DFG (Po 255/17-4 to F.P.); the European Commission and the German Bundesministerium für Bildung und Forschung BMBF (ERA-NET NEURON project: EUHFAUTISM) (EUHFAUTISM-01EW1105 to C.M.F.); and the Landes-Offensive zur Entwicklung wissenschaftlich-ökonomischer Exzellenz (LOEWE): Neuronal Coordination Research Focus Frankfurt (NeFF).Furthermore, we gratefully acknowledge the families participating in the Autism Genome Project (AGP) and the main funders: Autism Speaks (USA), the Health Research Board (HRB; Ireland), the Medical Research Council (MRC; UK), Genome Canada/Ontario Genomics Institute and the Hilibrand Foundation (USA).

Conflict of interest

The authors are not aware of any conflict of interest interfering with publication of this work, data collection or experimental design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas G. Chiocchetti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 339 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waltes, R., Duketis, E., Knapp, M. et al. Common variants in genes of the postsynaptic FMRP signalling pathway are risk factors for autism spectrum disorders. Hum Genet 133, 781–792 (2014). https://doi.org/10.1007/s00439-013-1416-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-013-1416-y

Keywords

Navigation