Skip to main content

Advertisement

Log in

Vascular remodeling by intussusceptive angiogenesis

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Intussusception (growth within itself) is an alternative to the sprouting mode of angiogenesis. The protrusion of opposing microvascular walls into the capillary lumen creates a contact zone between endothelial cells. The endothelial bilayer is perforated, intercellular contacts are reorganized, and a transluminal pillar with an interstitial core is formed, which is soon invaded by myofibroblasts and pericytes leading to its rapid enlargement by the deposition of collagen fibrils. Intussusception has been implicated in three processes of vascular growth and remodeling. (1) Intussusceptive microvascular growth permits rapid expansion of the capillary plexus, furnishing a large endothelial surface for metabolic exchange. (2) Intussusceptive arborization causes changes in the size, position, and form of preferentially perfused capillary segments, creating a hierarchical tree. (3) Intussusceptive branching remodeling (IBR) leads to modification of the branching geometry of supplying vessels, optimizing pre- and postcapillary flow properties. IBR can also lead to the removal of branches by pruning in response to changes in metabolic needs. None of the three modes requires the immediate proliferation of endothelial cells but rather the rearrangement and plastic remodeling of existing ones. Intussusception appears to be triggered immediately after the formation of the primitive capillary plexus by vasculogenesis or sprouting. The advantage of this mechanism of growth over sprouting is that blood vessels are generated more rapidly in an energetically and metabolically more economic manner, as extensive cell proliferation, basement membrane degradation, and invasion of the surrounding tissue are not required; the capillaries thereby formed are less leaky. This process occurs without disrupting organ function. Improvements in our understanding of the process should enable the development of novel pro- and anti-angiogenic therapeutic treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–d.
Fig. 2a, b.
Fig. 3a, b.
Fig. 4.
Fig. 5a–d
Fig. 6a–h.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  • Alon T, Hemo I, Itin A, Peter J, Stone J, Keshet E (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1:1024–1028

    CAS  PubMed  Google Scholar 

  • Ashton N (1966) Oxygen and the growth and development of retinal vessels. In vivo and in vitro studies. Am J Ophthalmol 62:412–435

    CAS  PubMed  Google Scholar 

  • Auerbach R, Kubai L, Knighton D, Folkman J (1974) A simple procedure for the long-term cultivation of chicken embryos. Dev Biol 41:391–394

    Google Scholar 

  • Augustin HG (1998) Antiangiogenic tumour therapy: will it work? Trends Pharmacol Sci 19:216–222

    CAS  PubMed  Google Scholar 

  • Augustin HG (2001) Tubes, branches, and pillars: the many ways of forming a new vasculature. Circ Res 89:645–647

    CAS  PubMed  Google Scholar 

  • Ausprunk DH, Folkman J (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 14:53–65

    CAS  PubMed  Google Scholar 

  • Ausprunk DH, Knighton DR, Folkman J (1974) Differentiation of vascular endothelium in the chick chorioallantois: a structural and autoradiographic study. Dev Biol 38:237–248

    CAS  PubMed  Google Scholar 

  • Benjamin LE, Hemo I, Keshet E (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125:1591–1598

    CAS  PubMed  Google Scholar 

  • Bergers G, Benjamin LE (2003) Angiogenesis: tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Google Scholar 

  • Burger PC, Chandler DB, Klintworth GK (1983) Corneal neovascularization as studied by scanning electron microscopy of vascular casts. Lab Invest 48:169–180

    CAS  PubMed  Google Scholar 

  • Burri PH, Djonov V (2002) Intussusceptive angiogenesis—the alternative to capillary sprouting. Mol Aspects Med 23:1–27

    Article  Google Scholar 

  • Burri PH, Tarek MR (1990) A novel mechanism of capillary growth in the rat pulmonary microcirculation. Anat Rec 228:35–45

    CAS  PubMed  Google Scholar 

  • Burri PH, Dbaly J, Weibel ER (1974) The postnatal growth of the rat lung. I. Morphometry. Anat Rec 178:711–730

    CAS  PubMed  Google Scholar 

  • Caduff JH, Fischer LC, Burri PH (1986) Scanning electron microscope study of the developing microvasculature in the postnatal rat lung. Anat Rec 216:154–164

    CAS  PubMed  Google Scholar 

  • Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 6:653–660

    Article  Google Scholar 

  • Clark E, Clark E (1939) Microscopic observations of the growth of blood capillaries in the living mammal. Am J Anat 64:251–299

    Google Scholar 

  • Conway EM, Collen D, Carmeliet P (2001) Molecular mechanisms of blood vessel growth. Cardiovasc Res 49:507–521

    CAS  PubMed  Google Scholar 

  • Djonov V, Schmid M, Tschanz SA, Burri PH (2000a) Intussusceptive angiogenesis: its role in embryonic vascular network formation. Circ Res 86:286–292

    CAS  Google Scholar 

  • Djonov VG, Galli AB, Burri PH (2000b) Intussusceptive arborization contributes to vascular tree formation in the chick chorio-allantoic membrane. Anat Embryol (Berl) 202:347–357

    Google Scholar 

  • Djonov V, Andres AC, Ziemiecki A (2001) Vascular remodelling during the normal and malignant life cycle of the mammary gland. Microsc Res Tech 52:182–189

    Article  CAS  PubMed  Google Scholar 

  • Djonov VG, Kurz H, Burri PH (2002) Optimality in the developing vascular system: branching remodeling by means of intussusception as an efficient adaptation mechanism. Dev Dyn 224:391–402

    Article  PubMed  Google Scholar 

  • Dor Y, Porat R, Keshet E (2001) Vascular endothelial growth factor and vascular adjustments to perturbations in oxygen homeostasis. Am J Physiol Cell Physiol 280:C1367–C1374

    CAS  PubMed  Google Scholar 

  • Dor Y, Djonov V, Keshet E (2003) Making vascular networks in the adult: branching morphogenesis without a roadmap. Trends Cell Biol 13:131–136

    Article  CAS  PubMed  Google Scholar 

  • Fisher AB, Chien S, Barakat AI, Nerem RM (2001) Endothelial cellular response to altered shear stress. Am J Physiol Lung Cell Mol Physiol 281:L529–L533

    CAS  PubMed  Google Scholar 

  • Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    CAS  PubMed  Google Scholar 

  • Folkman J, D’Amore PA (1996) Blood vessel formation: what is its molecular basis? Cell 87:1153–1155

    CAS  PubMed  Google Scholar 

  • Frame MD, Sarelius IH (1993) Arteriolar bifurcation angles vary with position and when flow is changed. Microvasc Res 46:190–205

    Article  CAS  PubMed  Google Scholar 

  • Gale NW, Baluk P, Pan L, Kwan M, Holash J, DeChiara TM, McDonald DM, Yancopoulos GD (2001) Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev Biol 230:151–160

    CAS  PubMed  Google Scholar 

  • Gambino LS, Wreford NG, Bertram JF, Dockery P, Lederman F, Rogers PA (2002) Angiogenesis occurs by vessel elongation in proliferative phase human endometrium. Hum Reprod 17:1199–1206

    Article  PubMed  Google Scholar 

  • Gargett CE, Lederman F, Heryanto B, Gambino LS, Rogers PA (2001) Focal vascular endothelial growth factor correlates with angiogenesis in human endometrium. Role of intravascular neutrophils. Hum Reprod 16:1065–1075

    Article  CAS  PubMed  Google Scholar 

  • Groningen JP van, Wenink AC, Testers LH (1991) Myocardial capillaries: increase in number by splitting of existing vessels. Anat Embryol (Berl) 184:65–70

    Google Scholar 

  • Grosskreutz CL, Anand-Apte B, Duplaa C, Quinn TP, Terman BI, Zetter B, D’Amore PA (1999) Vascular endothelial growth factor-induced migration of vascular smooth muscle cells in vitro. Microvasc Res 58:128–136

    Article  CAS  PubMed  Google Scholar 

  • Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–3055

    CAS  PubMed  Google Scholar 

  • Jain RK, Munn LL, Fukumura D (2002) Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer 2:266–276

    CAS  PubMed  Google Scholar 

  • Kauffman SL, Burri PH, Weibel ER (1974) The postnatal growth of the rat lung. II. Autoradiography. Anat Rec 180:63–76

    CAS  PubMed  Google Scholar 

  • Kurz H, Ambrosy S, Wilting J, Marme D, Christ B (1995) Proliferation pattern of capillary endothelial cells in chorioallantoic membrane development indicates local growth control, which is counteracted by vascular endothelial growth factor application. Dev Dyn 203:174–186

    CAS  PubMed  Google Scholar 

  • Kurz H, Burri PH, Djonov VG (2003) Angiogenesis and vascular remodeling by intussusception: from form to function. News Physiol Sci 18:65–70

    PubMed  Google Scholar 

  • Oh SJ, Kurz H, Christ B, Wilting J (1998) Platelet-derived growth factor-B induces transformation of fibrocytes into spindle-shaped myofibroblasts in vivo. Histochem Cell Biol 109:349–357

    CAS  PubMed  Google Scholar 

  • Ohlsson R, Falck P, Hellstrom M, Lindahl P, Bostrom H, Franklin G, Ahrlund-Richter L, Pollard J, Soriano P, Betsholtz C (1999) PDGFB regulates the development of the labyrinthine layer of the mouse fetal placenta. Dev Biol 212:124–136

    Article  CAS  PubMed  Google Scholar 

  • Osawa M, Masuda M, Kusano K, Fujiwara K (2002) Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: is it a mechanoresponsive molecule? J Cell Biol 158:773–785

    Article  CAS  PubMed  Google Scholar 

  • Paku S, Paweletz N (1991) First steps of tumor-related angiogenesis. Lab Invest 65:334–346

    CAS  PubMed  Google Scholar 

  • Patan S, Alvarez MJ, Schittny JC, Burri PH (1992) Intussusceptive microvascular growth: a common alternative to capillary sprouting. Arch Histol Cytol 55 (Suppl):65–75

    PubMed  Google Scholar 

  • Patan S, Haenni B, Burri PH (1993) Evidence for intussusceptive capillary growth in the chicken chorio-allantoic membrane (CAM). Anat Embryol (Berl) 187:121–130

    Google Scholar 

  • Patan S, Haenni B, Burri PH (1996) Implementation of intussusceptive microvascular growth in the chicken chorioallantoic membrane (CAM). I. Pillar formation by folding of the capillary wall. Microvasc Res 51:80–98

    Article  CAS  PubMed  Google Scholar 

  • Patan S, Munn LL, Tanda S, Roberge S, Jain RK, Jones RC (2001a) Vascular morphogenesis and remodeling in a model of tissue repair: blood vessel formation and growth in the ovarian pedicle after ovariectomy. Circ Res 89:723–731

    CAS  PubMed  Google Scholar 

  • Patan S, Tanda S, Roberge S, Jones RC, Jain RK, Munn LL (2001b) Vascular morphogenesis and remodeling in a human tumor xenograft: blood vessel formation and growth after ovariectomy and tumor implantation. Circ Res 89:732–739

    CAS  PubMed  Google Scholar 

  • Ribatti D, Nico B, Vacca A, Roncali L, Burri PH, Djonov V (2001) Chorioallantoic membrane capillary bed: a useful target for studying angiogenesis and anti-angiogenesis in vivo. Anat Rec 264:317–324

    Article  CAS  PubMed  Google Scholar 

  • Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    CAS  PubMed  Google Scholar 

  • Rizzo V, DeFouw DO (1993) Macromolecular selectivity of chick chorioallantoic membrane microvessels during normal angiogenesis and endothelial differentiation. Tissue Cell 25:847–856

    CAS  PubMed  Google Scholar 

  • Royen N van, Piek JJ, Buschmann I, Hoefer I, Voskuil M, Schaper W (2001) Stimulation of arteriogenesis; a new concept for the treatment of arterial occlusive disease. Cardiovasc Res 49:543–553

    Article  PubMed  Google Scholar 

  • Schlatter P, Konig MF, Karlsson LM, Burri PH (1997) Quantitative study of intussusceptive capillary growth in the chorioallantoic membrane (CAM) of the chicken embryo. Microvasc Res 54:65–73

    CAS  PubMed  Google Scholar 

  • Shin D, Garcia-Cardena G, Hayashi S, Gerety S, Asahara T, Stavrakis G, Isner J, Folkman J, Gimbrone MA Jr, Anderson DJ (2001) Expression of ephrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Dev Biol 230:139–150

    CAS  PubMed  Google Scholar 

  • Stanton AV, Wasan B, Cerutti A, Ford S, Marsh R, Sever PP, Thom SA, Hughes AD (1995) Vascular network changes in the retina with age and hypertension. J Hypertens 13:1724–1728

    CAS  PubMed  Google Scholar 

  • Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180

    CAS  PubMed  Google Scholar 

  • Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, McDonald DM (1999) Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286:2511–2514

    CAS  PubMed  Google Scholar 

  • Zakrzewicz A, Secomb TW, Pries AR (2002) Angioadaptation: keeping the vascular system in shape. News Physiol Sci 17:197–201

    PubMed  Google Scholar 

  • Zeltner TB, Caduff JH, Gehr P, Pfenninger J, Burri PH (1987) The postnatal development and growth of the human lung. I. Morphometry. Respir Physiol 67:247–267

    Google Scholar 

  • Zhang ZG, Zhang L, Tsang W, Soltanian-Zadeh H, Morris D, Zhang R, Goussev A, Powers C, Yeich T, Chopp M (2002) Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia. J Cereb Blood Flow Metab 22:379–392

    CAS  PubMed  Google Scholar 

  • Zhou A, Egginton S, Hudlicka O, Brown MD (1998) Internal division of capillaries in rat skeletal muscle in response to chronic vasodilator treatment with alpha1-antagonist prazosin. Cell Tissue Res 293:293–303

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Sala, B. de Breuyn, B. Haenni, K. Babl, and B. Krieger for their technical assistance, S.A. Tschanz for the three-dimensional reconstruction of pillars, and E. de Peyer for art work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Djonov.

Additional information

This research was supported by the Swiss National Science Foundation (grant no. 3100-055895.98/2) and the Bernese Cancer League

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djonov, V., Baum, O. & Burri, P.H. Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res 314, 107–117 (2003). https://doi.org/10.1007/s00441-003-0784-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-003-0784-3

Keywords

Navigation