Skip to main content

Advertisement

Log in

Target areas innervated by PACAP-immunoreactive retinal ganglion cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The retinohypothalamic tract (RHT) originates from a subset of retinal ganglion cells (RGCs). The cells of the RHT co-store the neurotransmitters PACAP and glutamate, which in a complex interplay mediate light information to the circadian clock located in the suprachiasmatic nuclei (SCN). These ganglion cells are intrinsically photosensitive probably due to expression of melanopsin, a putative photoreceptor involved in light entrainment. In the present study we examined PACAP-containing retinal projections to the brain using intravitreal injection of the anterograde tracer cholera toxin subunit B (ChB) and double immunostaining for PACAP and ChB. Our results show that the PACAP-containing nerve fibres not only constituted the major projections to the SCN and the intergeniculate leaflet of the thalamus but also had a large terminal field in the olivary pretectal nucleus. The contralateral projection dominated except for the SCN, which showed bilateral innervation. PACAP-containing retinal fibres were also found in the ventrolateral preoptic nucleus, the anterior and lateral hypothalamic area, the subparaventricular zone, the ventral part of the lateral geniculate nucleus and the nucleus of the optic tract. Retinal projections not previously described in the rat also contained PACAP. These new projections were found in the lateral posterior nucleus, the posterior limitans nucleus, the dorsal part of the anterior pretectal nucleus and the posterior and medial pretectal nuclei. Only a few PACAP-containing retinal fibres were found in the superior colliculus. Areas innervated by PACAP-immunoreactive fibres also expressed the PACAP-specific PAC1 receptor as shown by in situ hybridization histochemistry. The findings suggest that PACAP plays a role as neurotransmitter in non-imaging photoperception to target areas in the brain regulating circadian timing, masking, regulation of sleep-wake cycle and pupillary reflex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–O
Fig. 2A–D
Fig. 3A–F
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8A–I
Fig. 9

Similar content being viewed by others

Abbreviations

3v :

Third ventricle

ac :

Anterior commissure

AD :

Anterodorsal thalamic nucleus

AH :

Anterior hypothalamic area

APTD :

Anterior pretectal nucleus, dorsal part

ChB :

Cholera toxin subunit B

CPu :

Caudate putamen

CPT :

Commissural pretectal nucleus

DGL :

Dorsal geniculate nucleus

IGL :

Intergeniculate leaflet

LH :

Lateral hypothalamic area

LP :

Lateral posterior thalamic nucleus

LS :

Lateral septum

MB :

Mammillary body

MPO :

Medial preoptic nucleus

MPT :

Medial pretectal nucleus

oc :

Optic chiasma

OPT :

Olivary pretectal nucleus

OT :

Nucleus of the optic tract

PACAP :

Pituitary adenylate cyclase-activating polypeptide

PAC1 :

PACAP receptor type 1

PAG :

Periaqueductal gray

Pe :

Periventricular hypothalamic nucleus

PLi :

Posterior limitans thalamic nucleus

PPT :

Posterior pretectal nucleus

PVT :

Paraventricular thalamic nucleus

PVN :

Paraventricular hypothalamic nucleus

RGCs :

Retinal ganglion cells

RHT :

Retinohypothalamic tract

SCN :

Suprachiasmatic nucleus

SC :

Superior colliculus

SNR :

Substantia nigra, reticular part

SON :

Supraoptic nucleus

SPVZ :

Subparaventricular zone

VGL :

Ventral geniculate nucleus

VIP :

Vasoactive intestinal peptide

VPAC1 :

VIP/PACAP receptor type 1

VPAC2 :

VIP/PACAP receptor type 2

VLPO :

Ventrolateral preoptic nucleus

VTA :

Ventral tegmental area

References

  • Angelucci A, Clasca F, Sur M (1996) Anterograde axonal tracing with the subunit B of cholera toxin: a highly sensitive immunohistochemical protocol for revealing fine axonal morphology in adult and neonatal brains. J Neurosci Methods 65:101–112

    CAS  PubMed  Google Scholar 

  • Belenky MA, Smeraski CA, Provencio I, Sollars PJ, Pickard GE (2003) Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J Comp Neurol 460:380–393

    Article  PubMed  Google Scholar 

  • Bergström AL, Hannibal J, Hindersson P, Fahrenkrug J (2003) Light-induced phase shift in the Syrian hamster (Mesocricetus auratus) is attenuated by the PACAP receptor antagonist PACAP6–38 or PACAP immunoneutralization. Eur J Neurosci 18:2552–2562

    Article  PubMed  Google Scholar 

  • Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073

    CAS  PubMed  Google Scholar 

  • Card JP, Moore RY (1989) Organization of lateral geniculate-hypothalamic connections in the rat. J Comp Neurol 284:135–147

    CAS  PubMed  Google Scholar 

  • Chen D, Buchanan GF, Ding JM, Hannibal J, Gillette MU (1999) PACAP: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proc Natl Acad Sci U S A 96:13409–13414

    Article  PubMed  Google Scholar 

  • Clarke RJ, Ikeda H (1985a) Luminance and darkness detectors in the olivary and posterior pretectal nuclei and their relationship to the pupillary light reflex in the rat. I. Studies with steady luminance levels. Exp Brain Res 57:224–232

    CAS  PubMed  Google Scholar 

  • Clarke RJ, Ikeda H (1985b) Luminance detectors in the olivary pretectal nucleus and their relationship to the pupillary light reflex in the rat. II. Studies using sinusoidal light. Exp Brain Res 59:83–90

    CAS  PubMed  Google Scholar 

  • Fahrenkrug J, Nielsen HS, Hannibal J (2004) Expression of melanopsin during development of the rat retina. Neuroreport (in press)

  • Foster RG (2002) Keeping an eye on the time: the Cogan lecture. Invest Ophthalmol Vis Sci 43:1286–1298

    PubMed  Google Scholar 

  • Foster RG, Hankins MW (2002) Non-rod, non-cone photoreception in the vertebrates. Prog Retin Eye Res 21:507–527

    Article  PubMed  Google Scholar 

  • Freedman MS, Lucas RJ, Soni B, von Schantz M, Muñoz M, David-Gray Z, Foster RG (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284:502–504

    CAS  PubMed  Google Scholar 

  • Gooley JJ, Lu J, Chou TC, Scammell TE, Saper CB (2001) Melanopsin in cells of origin of the retinohypothalamic tract. Nat Neurosci 12:1165

    Article  Google Scholar 

  • Gooley JJ, Lu J, Fischer D, Saper CB (2003) A broad role for melanopsin in nonvisual photoreception. J Neurosci 23:7093–7106

    CAS  PubMed  Google Scholar 

  • Hannibal J (2002a) Neurotransmitters of the retino-hypothalamic tract. Cell Tissue Res 309:73–88

    Article  CAS  Google Scholar 

  • Hannibal J (2002b) Pituitary adenylate cyclase-activating peptide in the rat central nervous system: an immunohistochemical and in situ hybridization study. J Comp Neurol 453:389–417

    Article  CAS  PubMed  Google Scholar 

  • Hannibal J, Fahrenkrug J (2002) Immunoreactive substance P is not part of the retinohypothalamic tract in the rat. Cell Tissue Res 309:293–299

    Article  CAS  PubMed  Google Scholar 

  • Hannibal J, Mikkelsen JD, Clausen H, Holst JJ, Wulff BS, Fahrenkrug J (1995) Gene expression of pituitary adenylate cyclase activating polypeptide (PACAP) in the rat hypothalamus. Regul Pept 55:133–148

    CAS  PubMed  Google Scholar 

  • Hannibal J, Ding JM, Chen D, Fahrenkrug J, Larsen PJ, Gillette MU, Mikkelsen JD (1997) Pituitary adenylate cyclase activating peptide (PACAP) in the retinohypothalamic tract. A daytime regulator of the biological clock. J Neurosci 17:2637–2644

    CAS  PubMed  Google Scholar 

  • Hannibal J, Moller M, Ottersen OP, Fahrenkrug J (2000) PACAP and glutamate are co-stored in the retinohypothalamic tract. J Comp Neurol 418:147–155

    CAS  PubMed  Google Scholar 

  • Hannibal J, Vrang N, Card JP, Fahrenkrug J (2001a) Light dependent induction of c-Fos during subjective day and night in PACAP containing retinal ganglion cells of the retino-hypothalmic tract. J Biol Rhythms 16:457–470

    CAS  PubMed  Google Scholar 

  • Hannibal J, Brabet P, Jamen F, Nielsen HS, Journot L, Fahrenkrug J (2001b) Dissociation between light induced phase shift of the circadian rhythm and clock gene expression in mice lacking the PACAP type 1 receptor (PAC1). J Neurosci 21:4883–4890

    CAS  Google Scholar 

  • Hannibal J, Hindersson P, Knudsen SM, Georg B, Fahrenkrug J (2002) The photopigment melanopsin is exclusively present in PACAP containing retinal ganglion cells of the retinohypothalamic tract. J Neurosci 22:RC191:1–7

    Google Scholar 

  • Harmar AJ, Arimura A, Gozes I, Journot L, Laburthe M, Pisegna JR, Rawlings SR, Robberecht P, Said SI, Sreedharan SP, Wank SA, Waschek JA (1998) International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol Rev 50:265–270

    CAS  PubMed  Google Scholar 

  • Harrington ME, Hoque S, Hall A, Golombek D, Biello S (1999) Pituitary adenylate cyclase activating peptide phase shifts circadian rhythms in a manner similar to light. J Neurosci 19:6637–6642

    CAS  PubMed  Google Scholar 

  • Hashimoto H, Nogi H, Mori K, Ohishi H, Shigemoto R, Yamamoto K, Matsuda T, Mizuno N, Nagata S, Baba A (1996) Distribution of the mRNA for a pituitary adenylate cyclase-activating polypeptide receptor in the rat brain: an in situ hybridization study. J Comp Neurol 371:567–577

    CAS  PubMed  Google Scholar 

  • Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070

    CAS  PubMed  Google Scholar 

  • Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, Lem J, Biel M, Hofmann F, Foster RG, Yau KW (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424:75–81

    Article  Google Scholar 

  • Itaya SK, Van Hoesen GW, Jenq CB (1981) Direct retinal input to the limbic system of the rat. Brain Res 226:33–42

    Article  CAS  PubMed  Google Scholar 

  • Johnson RF, Morin LP, Moore RY (1988) Retinohypothalamic projections in the hamster and rat demonstrated using cholera toxin. Brain Res 462:301–312

    CAS  PubMed  Google Scholar 

  • Kopp MD, Meissl H, Dehghani F, Korf HW (2001) The pituitary adenylate cyclase-activating polypeptide modulates glutamatergic calcium signalling: investigations on rat suprachiasmatic nucleus neurons. J Neurochem 79:161–171

    PubMed  Google Scholar 

  • Legg CR, Cowey A (1977) The role of the ventral lateral geniculate nucleus and posterior thalamus in intensity discrimination in rats. Brain Res 123:261–273

    Article  CAS  PubMed  Google Scholar 

  • Levine JD, Weiss ML, Rosenwasser AM, Miselis RR (1991) Retinohypothalamic tract in the female albino rat: a study using horseradish peroxidase conjugated to cholera toxin. J Comp Neurol 306:344–360

    CAS  PubMed  Google Scholar 

  • Ling C, Schneider GE, Jhaveri S (1998) Target-specific morphology of retinal axon arbors in the adult hamster. Vis Neurosci 15:559–579

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Shiromani P, Saper CB (1999) Retinal input to the sleep-active ventrolateral preoptic nucleus in the rat. Neuroscience 93:209–214

    CAS  PubMed  Google Scholar 

  • Lucas RJ, Freedman MS, Munoz M, Garcia-Fernandez JM, Foster RG (1999) Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284:505–507

    CAS  PubMed  Google Scholar 

  • Lucas RJ, Douglas RH, Foster RG (2001) Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci 4:621–626

    CAS  PubMed  Google Scholar 

  • Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW (2003) Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299:245–247

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen JD (1992) Visualization of efferent retinal projections by immunohistochemical identification of cholera toxin subunit B. Brain Res Bull 28:619–623

    CAS  PubMed  Google Scholar 

  • Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, Edmondson J, Axel R (1996) Visualizing an olfactory sensory map. Cell 87:675–686

    CAS  PubMed  Google Scholar 

  • Moore RY, Card JP (1994) Intergeniculate leaflet: an anatomically and functionally distinct subdivision of the lateral geniculate complex. J Comp Neurol 344:403–430

    CAS  PubMed  Google Scholar 

  • Moore RY, Lenn NJ (1972) A retinohypothalamic projection in the rat. J Comp Neurol 146:1–14

    CAS  PubMed  Google Scholar 

  • Moore RY, Speh JC, Card JP (1995) The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells. J Comp Neurol 352:351–366

    CAS  PubMed  Google Scholar 

  • Morin LP, Blanchard JH (1997) Neuropeptide Y and enkephalin immunoreactivity in retinorecipient nuclei of the hamster pretectum and thalamus. Vis Neurosci 14:765–777

    CAS  PubMed  Google Scholar 

  • Morin LP, Blanchard JH, Provencio I (2003) Retinal ganglion cells projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet and visual midbrain: bifurcation and melanopsin immunoreactivity. J Comp Neurol 465:401–416

    Article  PubMed  Google Scholar 

  • Panda S, Sato TK, Castrucci AM, Rollag MD, DeGrip WJ, Hogenesch JB, Provencio I, Kay SA (2002) Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298:2213–2216

    Article  CAS  PubMed  Google Scholar 

  • Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM, Pletcher MT, Sato TK, Wiltshire T, Andahazy M, Kay SA, Van Gelder RN, Hogenesch JB (2003) Melanopsin is required for non-image-forming photic responses in blind mice. Science 301:525–527

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates, 3rd edn. Academic Press, San Diego, CA

  • Pickard GE, Smeraski CA, Tomlinson CC, Banfield BW, Kaufman J, Wilcox CL, Enquist LW, Sollars PJ (2002) Intravitreal injection of the attenuated pseudorabies virus PRV Bartha results in infection of the hamster suprachiasmatic nucleus only by retrograde transsynaptic transport via autonomic circuits. J Neurosci 22:2701–2710

    CAS  PubMed  Google Scholar 

  • Piggins HD, Marchant EG, Goguen D, Rusak B (2001) Phase-shifting effects of pituitary adenylate cyclase activating polypeptide on hamster wheel-running rhythms. Neurosci Lett 305:25–28

    CAS  PubMed  Google Scholar 

  • Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD (1998) Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A 95:340–345

    CAS  PubMed  Google Scholar 

  • Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD (2000) A novel human opsin in the inner retina. J Neurosci 20:600–605

    CAS  PubMed  Google Scholar 

  • Provencio I, Rollag MD, Castrucci AM (2002) Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415:493

    CAS  Google Scholar 

  • Redlin U, Mrosovsky N (1999) Masking by light in hamsters with SCN lesions. J Comp Physiol [A] 184:439–448

    Google Scholar 

  • Reiner A, Zhang D, Eldred WD (1996) Use of the sensitive anterograde tracer cholera toxin fragment B reveals new details of the central retinal projections in turtles. Brain Behav Evol 48:307–337

    CAS  PubMed  Google Scholar 

  • Reuss S, Decker K (1997) Anterograde tracing of retinohypothalamic afferents with Fluoro-Gold. Brain Res 745:197–204

    Article  CAS  PubMed  Google Scholar 

  • Riley JN, Card JP, Moore RY (1981) A retinal projection to the lateral hypothalamus in the rat. Cell Tissue Res 214:257–269

    CAS  PubMed  Google Scholar 

  • Ritter S, Dinh TT (1991) Prior optic nerve transection reduces capsaicin-induced degeneration in rat subcortical visual structures. J Comp Neurol 308:79–90

    CAS  PubMed  Google Scholar 

  • Ruby NF, Brennan TJ, Xie X, Cao V, Franken P, Heller HC, O’Hara BF (2002) Role of melanopsin in circadian responses to light. Science 298:2211–2213

    Article  CAS  PubMed  Google Scholar 

  • Scalia F (1972) Retinal projections to the olivary pretectal nucleus in the tree shrew and comparison with the rat. Brain Behav Evol 6:237–252

    CAS  PubMed  Google Scholar 

  • Sefton A, Dreher B (1995) Visual system. In: Paxinos G (ed) The rat nervous system. Academic, New York, pp 833–898

  • Sheward WJ, Lutz EM, Harmar AJ (1995) The distribution of vasoactive intestinal peptide2 receptor messenger RNA in the rat brain and pituitary gland as assessed by in situ hybridization. Neuroscience 67:409–418

    Article  CAS  PubMed  Google Scholar 

  • Shioda S, Shuto Y, Somogy&vacute, Ari-Vigh A, Legradi G, Onda H, Coy DH, Nakajo S, Arimura A (1997) Localization and gene expression of the receptor for pituitary adenylate cyclase-activating polypeptide in the rat brain. Neurosci Res 28:345–354

    CAS  PubMed  Google Scholar 

  • Sollars PJ, Smeraski CA, Kaufman JD, Ogilvie MD, Provencio I, Morin LP, Pickard GE (2002) Melanopsin and non-melanopsin expressing retinal ganglion cells innervate the suprachiasmatic nucleus. Soc Neurosci Abstr No.371.21

  • Trejo LJ, Cicerone CM (1984) Cells in the pretectal olivary nucleus are in the pathway for the direct light reflex of the pupil in the rat. Brain Res 300:49–62

    Article  CAS  PubMed  Google Scholar 

  • Usdin TB, Bonner TI, Mezey E (1994) Two receptors for vasoactive intestinal polypeptide with similar specificity and complementary distribution. Endocrinology 135:2662–2680

    CAS  PubMed  Google Scholar 

  • Vaudry D, Gonzalez BJ, Basille M, Yon L, Fournier A, Vaudry H (2000) Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol Rev 52:269–324

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The skillful technical assistance of Anita Hansen and Lea Charlotte Larsen is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Hannibal.

Additional information

This study was supported by The Danish Biotechnology Center for Cellular Communication and The Danish Neuroscience Programme. J.H. is postdoc funded by the Danish Medical Research Council (Jr. No. 0001716)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hannibal, J., Fahrenkrug, J. Target areas innervated by PACAP-immunoreactive retinal ganglion cells. Cell Tissue Res 316, 99–113 (2004). https://doi.org/10.1007/s00441-004-0858-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-004-0858-x

Keywords

Navigation