Skip to main content

Advertisement

Log in

Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The dental follicle (DF) surrounding the developing tooth germ is an ectomesenchymal tissue composed of various cell populations derived from the cranial neural crest. Human dental follicle cells (HDFC) are believed to contain precursor cells for cementoblasts, periodontal ligament cells, and osteoblasts. Bone morphogenetic proteins (BMPs) produced by Hertwig’s epithelial root sheath or present in enamel matrix derivatives (EMD) seem to be involved in the control of DF cell differentiation, but their precise function remains largely unknown. We report the immunolocalization of STRO-1 (a marker of multipotential mesenchymal progenitor cells) and BMP receptors (BMPR) in DF in vivo. In culture, HDFC co-express STRO-1/BMPR and exhibit multilineage properties. Incubation with rhBMP-2 and rhBMP-7 or EMD for 24 h increases the expression of BMP-2 and BMP-7 by HDFC. Long-term stimulation of these cells by rhBMP-2 and/or rhBMP-7 or EMD significantly increases alkaline phosphatase activity (AP) and mineralization. Expression of cementum attachment protein (CAP) and cementum protein-23 (CP-23), two putative cementoblast markers, has been detected in EMD-stimulated whole DF and in cultured HDFC stimulated with EMD or BMP-2 and BMP-7. RhNoggin, a BMP antagonist, abolishes AP activity, mineralization, and CAP/CP-23 expression in HDFC cultures and the expression of BMP-2 and BMP-7 induced by EMD. Phosphorylation of Smad-1 and MAPK is stimulated by EMD or rhBMP-2. However, rhNoggin blocks only Smad-1 phosphorylation under these conditions. Thus, EMD may activate HDFC toward the cementoblastic phenotype, an effect mainly (but not exclusively) involving both exogenous and endogenous BMP-dependent pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aberg T, Wozney J, Thesleff I (1997) Expression patterns of bone morphogenetic proteins (Bmps) in the developing mouse tooth suggest roles in morphogenesis and cell differentiation. Dev Dyn 210:383–396

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Perez MA, Narayanan S, Zeichner-David M, Rodriguez Carmona B, Arzate H (2006) Molecular cloning, expression and immunolocalization of a novel human cementum-derived protein (CP-23). Bone 38:409–419

    Article  PubMed  CAS  Google Scholar 

  • Arzate H, Jimenez-Garcia LF, Alvarez-Perez MA, Landa A, Bar-Kana I, Pitaru S (2002) Immunolocalization of a human cementoblastoma-conditioned medium-derived protein. J Dent Res 81:541–546

    PubMed  CAS  Google Scholar 

  • Bartold PM, Shi S, Gronthos S (2006) Stem cells and periodontal regeneration. Periodontology 40:164–172

    Article  Google Scholar 

  • Bosshardt DD, Schroeder HE (1996) Cementogenesis reviewed: a comparison between human premolars and rodent molars. Anat Rec 245:267–292

    Article  PubMed  CAS  Google Scholar 

  • Bosshardt DD, Sculean A, Windisch P, Pjetursson BE, Lang NP (2005) Effects of enamel matrix proteins on tissue formation along the roots of human teeth. J Periodontal Res 40:158–167

    Article  PubMed  CAS  Google Scholar 

  • Chong CH, Carnes DL, Moritz AJ, Oates T, Ryu OH, Simmer J, Cochran DL (2006) Human periodontal fibroblast response to enamel matrix derivative, amelogenin, and platelet-derived growth factor-BB. J Periodontol 77:1242–1252

    Article  PubMed  CAS  Google Scholar 

  • Fisher LW, Stubbs JT 3rd, Young MF (1995) Antisera and cDNA probes to human and certain animal model bone matrix noncollagenous proteins. Acta Orthop Scand Suppl 266:61–65

    PubMed  CAS  Google Scholar 

  • Gestrelius S, Andersson C, Lidstrom D, Hammarstrom L, Somerman M (1997) In vitro studies on periodontal ligament cells and enamel matrix derivative. J Clin Periodontol 24:685–692

    Article  PubMed  CAS  Google Scholar 

  • Grzesik WJ, Kuzentsov SA, Uzawa K, Mankani M, Robey PG, Yamauchi M (1998) Normal human cementum-derived cells: isolation, clonal expansion, and in vitro and in vivo characterization. J Bone Miner Res 13:1547–1554

    Article  PubMed  CAS  Google Scholar 

  • Hakki SS, Berry JE, Somerman MJ (2001) The effect of enamel matrix protein derivative on follicle cells in vitro. J Periodontol 72:679–687

    Article  PubMed  CAS  Google Scholar 

  • Iwata T, Morotome Y, Tanabe T, Fukae M, Ishikawa I, Oida S (2002) Noggin blocks osteoinductive activity of porcine enamel extracts. J Dent Res 81:387–391

    PubMed  CAS  Google Scholar 

  • Keila S, Nemcovsky CE, Moses O, Artzi Z, Weinreb M (2004) In vitro effects of enamel matrix proteins on rat bone marrow cells and gingival fibroblasts. J Dent Res 83:134–138

    PubMed  CAS  Google Scholar 

  • Maniatopoulos C, Sodek J, Melcher AH (1988) Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res 254:317–330

    Article  PubMed  CAS  Google Scholar 

  • Matsuda N, Horikawa M, Watanabe M, Kitagawa S, Kudo Y, Takata T (2002) Possible involvement of extracellular signal-regulated kinases 1/2 in mitogenic response of periodontal ligament cells to enamel matrix derivative. Eur J Oral Sci 110:439–444

    Article  PubMed  CAS  Google Scholar 

  • Morsczeck C, Gotz W, Schierholz J, Zeilhofer F, Kuhn U, Mohl C, Sippel C, Hoffmann KH (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24:155–165

    Article  PubMed  CAS  Google Scholar 

  • Pitaru S, Pritzki A, Bar-Kana I, Grosskopf A, Savion N, Narayanan AS (2002) Bone morphogenetic protein 2 induces the expression of cementum attachment protein in human periodontal ligament clones. Connect Tissue Res 43:257–264

    Article  PubMed  CAS  Google Scholar 

  • Rincon JC, Xiao Y, Young WG, Bartold PM (2005) Enhanced proliferation, attachment and osteopontin expression by porcine periodontal cells exposed to Emdogain. Arch Oral Biol 50:1047–1054

    Article  PubMed  CAS  Google Scholar 

  • Rosendahl A, Pardali E, Speletas M, Ten Dijke P, Heldin CH, Sideras P (2002) Activation of bone morphogenetic protein/Smad signaling in bronchial epithelial cells during airway inflammation. Am J Respir Cell Mol Biol 27:160–169

    PubMed  CAS  Google Scholar 

  • Saito M, Iwase M, Maslan S, Nozaki N, Yamauchi M, Handa K, Takahashi O, Sato S, Kawase T, Teranaka T, Narayanan AS (2001) Expression of cementum-derived attachment protein in bovine tooth germ during cementogenesis. Bone 29:242–248

    Article  PubMed  CAS  Google Scholar 

  • Saito M, Handa K, Kiyono T, Hattori S, Yokoi T, Tsubakimoto T, Harada H, Noguchi T, Toyoda M, Sato S, Teranaka T (2005) Immortalization of cementoblast progenitor cells with Bmi-1 and TERT. J Bone Miner Res 20:50–57

    Article  PubMed  CAS  Google Scholar 

  • Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155

    Article  PubMed  CAS  Google Scholar 

  • Shimizu E, Saito R, Nakayama Y, Nakajima Y, Kato N, Takai H, Kim DS, Arai M, Simmer J, Ogata Y (2005) Amelogenin stimulates bone sialoprotein (BSP) expression through fibroblast growth factor 2 response element and transforming growth factor-beta1 activation element in the promoter of the BSP gene. J Periodontol 76:1482–1489

    Article  PubMed  CAS  Google Scholar 

  • Simmons PJ, Torok-Storb B (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78:55–62

    PubMed  CAS  Google Scholar 

  • Slavkin HC, Bringas P Jr, Bessem C, Santos V, Nakamura M, Hsu MY, Snead ML, Zeichner-David M, Fincham AG (1989) Hertwig’s epithelial root sheath differentiation and initial cementum and bone formation during long-term organ culture of mouse mandibular first molars using serumless, chemically-defined medium. J Periodontal Res 24:28–40

    Article  PubMed  CAS  Google Scholar 

  • Spahr A, Hammarstrom L (1999) Response of dental follicular cells to the exposure of denuded enamel matrix in rat molars. Eur J Oral Sci 107:360–367

    Article  PubMed  CAS  Google Scholar 

  • Stanford CM, Jacobson PA, Eanes ED, Lembke LA, Midura RJ (1995) Rapidly forming apatitic mineral in an osteoblastic cell line (UMR 106-01 BSP). J Biol Chem 270:9420–9428

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Nagano T, Yamakoshi Y, Gomi K, Arai T, Fukae M, Katagiri T, Oida S (2005) Enamel matrix derivative gel stimulates signal transduction of BMP and TGF-{beta}. J Dent Res 84:510–514

    PubMed  CAS  Google Scholar 

  • Swanson EC, Fong HK, Foster BL, Paine ML, Gibson CW, Snead ML, Somerman MJ (2006) Amelogenins regulate expression of genes associated with cementoblasts in vitro. Eur J Oral Sci 114 (Suppl 1):239–243

    Article  PubMed  CAS  Google Scholar 

  • Taba M Jr, Jin Q, Sugai JV, Giannobile WV (2005) Current concepts in periodontal bioengineering. Orthod Craniofac Res 8:292–302

    Article  PubMed  Google Scholar 

  • Takayama T, Suzuki N, Narukawa M, Tokunaga T, Otsuka K, Ito K (2005) Enamel matrix derivative stimulates core binding factor alpha1/Runt-related transcription factor-2 expression via activation of Smad1 in C2C12 cells. J Periodontol 76:244–249

    Article  PubMed  CAS  Google Scholar 

  • Ten Cate AR (1997) The development of the periodontium—a largely ectomesenchymally derived unit. Periodontol 2000 13:9–19

    Article  PubMed  CAS  Google Scholar 

  • Tompkins K, Veis A (2002) Polypeptides translated from alternatively spliced transcripts of the amelogenin gene, devoid of the exon 6a, b, c region, have specific effects on tooth germ development in culture. Connect Tissue Res 43:224–231

    Article  PubMed  CAS  Google Scholar 

  • Tompkins K, George A, Veis A (2006) Characterization of a mouse amelogenin [A-4]/M59 cell surface receptor. Bone 38:172–180

    Article  PubMed  CAS  Google Scholar 

  • Van der Pauw MT, Van den Bos T, Everts V, Beertsen W (2000) Enamel matrix-derived protein stimulates attachment of periodontal ligament fibroblasts and enhances alkaline phosphatase activity and transforming growth factor beta1 release of periodontal ligament and gingival fibroblasts. J Periodontol 71:31–43

    Article  PubMed  Google Scholar 

  • Veis A, Tompkins K, Alvares K, Wei K, Wang L, Wang XS, Brownell AG, Jengh SM, Healy KE (2000) Specific amelogenin gene splice products have signaling effects on cells in culture and in implants in vivo. J Biol Chem 275:41263–41272

    Article  PubMed  CAS  Google Scholar 

  • Viswanathan HL, Berry JE, Foster BL, Gibson CW, Li Y, Kulkarni AB, Snead ML, Somerman MJ (2003) Amelogenin: a potential regulator of cementum-associated genes. J Periodontol 74:1423–1431

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H, Cho SW, Kim EJ, Kim JY, Fujiwara N, Jung HS (2004) Developmental properties of the Hertwig’s epithelial root sheath in mice. J Dent Res 83:688–692

    PubMed  CAS  Google Scholar 

  • Yamashiro T, Tummers M, Thesleff I (2003) Expression of bone morphogenetic proteins and Msx genes during root formation. J Dent Res 82:172–176

    Article  PubMed  CAS  Google Scholar 

  • Zhao M, Xiao G, Berry JE, Franceschi RT, Reddi A, Somerman MJ (2002) Bone morphogenetic protein 2 induces dental follicle cells to differentiate toward a cementoblast/osteoblast phenotype. J Bone Miner Res 17:1441–1451

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Rawlins BA, Boachie-Adjei O, Myers ER, Arimizu J, Choi E, Lieberman JR, Crystal RG, Hidaka C (2004) Combined bone morphogenetic protein-2 and -7 gene transfer enhances osteoblastic differentiation and spine fusion in a rodent model. J Bone Miner Res 19:2021–2032

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. P. TenDijke (The Netherlands Cancer Institute, Amsterdam, The Netherlands) and Dr. C. Heldin (Ludwig Institute for Cancer Research, Uppsala, Sweden) for providing pSmad1 antibody, and to Dr. Larry Fisher (NIH, NIDCR, Craniofacial and Skeletal Diseases Branch, Bethesda, Maryland) for providing BSP antibody. STRO-1 antibody was obtained from the Developmental Studies Hybridoma Bank (Dr. K. Jensen). HBMSC were the kind gift of Dr. P. Bourin (Etablissement Français du Sang, Toulouse, France). Dental follicles were kindly provided by Drs. F. Vaysse and B. Courtois (Faculty of Odontology, University Paul-Sabatier, Toulouse, France). The authors also thank M. Mus and A. Bros for helping with experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Salles.

Additional information

This work was supported by grants from the French Program of Hospital Clinical Research (PHRC, AOL 0304602), from the Conseil Régional de Midi Pyrénées (Cell and Gene Therapy Program), and from the Etablissement Français du Sang (Program 2003.02).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kémoun, P., Laurencin-Dalicieux, S., Rue, J. et al. Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell Tissue Res 329, 283–294 (2007). https://doi.org/10.1007/s00441-007-0397-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0397-3

Keywords

Navigation