Skip to main content

Advertisement

Log in

Double gene deletion reveals lack of cooperation between claudin 11 and claudin 14 tight junction proteins

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Members of the claudin family of proteins are the main components of tight junctions (TJs), the major selective barrier of the paracellular pathway between epithelial cells. The selectivity and specificity of TJ strands are determined by the type of claudins present. An understanding of the cooperation between different claudins in various tissues is thus important. To study the possible cooperation between claudin 11 and claudin 14, we have generated claudin 11/claudin 14 double-deficient mice, which exhibit a combination of the phenotypes found in each of the singly deficient mutants, including deafness, neurological deficits, and male sterility. These two claudins have distinct and partially overlapping expression patterns in the kidney. Claudin 11 is located in both the proximal and distal convoluted tubules, whereas claudin 14 occurs in both the thin descending and thick ascending limbs of the loop of Henle and in the proximal convoluted tubules. Although daily urinary excretion of Mg++, and to a lesser extent of Ca++, tends to be higher in claudin 11/claudin 14 double mutants, these changes do not reach statistical significance compared with wild-type animals. Thus, under normal conditions, co-deletion of claudin 11 and claudin 14 does not affect kidney function or ion balance. Our data demonstrate that, despite the importance of each of these claudins, there is probably no functional cooperation between them. Generation of additional mouse models in which different claudins are abolished should provide further insight into the complex interactions between claudin proteins in various physiological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abuazza G, Becker A, Williams SS, Chakravarty S, Truong HT, Lin F, Baum M (2006) Claudins 6, 9, and 13 are developmentally expressed renal tight junction proteins. Am J Physiol Renal Physiol 291:F1132–F1141

    Article  PubMed  CAS  Google Scholar 

  • Acharya P, Beckel J, Ruiz WG, Wang E, Rojas R, Birder L, Apodaca G (2004) Distribution of the tight junction proteins ZO-1, occludin, and claudin-4, -8, and -12 in bladder epithelium. Am J Physiol Renal Physiol 287:F305–F318

    Article  PubMed  CAS  Google Scholar 

  • Angelow S, El-Husseini R, Kanzawa SA, Yu AS (2007) Renal localization and function of the tight junction protein, claudin-19. Am J Physiol Renal Physiol 293:F166–F177

    Article  PubMed  CAS  Google Scholar 

  • Belyantseva IA, Boger ET, Friedman TB (2003) Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle. Proc Natl Acad Sci USA 100:13958–13963

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yosef T, Belyantseva IA, Saunders TL, Hughes ED, Kawamoto K, Van Itallie CM, Beyer LA, Halsey K, Gardner DJ, Wilcox ER, Rasmussen J, Anderson JM, Dolan DF, Forge A, Raphael Y, Camper SA, Friedman TB (2003) Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Hum Mol Genet 12:2049–2061

    Article  PubMed  CAS  Google Scholar 

  • Beyer LA, Odeh H, Probst FJ, Lambert EH, Dolan DF, Camper SA, Kohrman DC, Raphael Y (2000) Hair cells in the inner ear of the pirouette and shaker 2 mutant mice. J Neurocytol 29:227–240

    Article  PubMed  CAS  Google Scholar 

  • Carter J, Morton JA, Dunnet SB (1997) Motor coordination and balance in rodents. In: Crawley JC, Rogawski MA, Sibley DR, Skolnik P, Wray S (eds) Current protocols in neuroscience, vol 2. Wiley, New York, pp 8.12.11–18.12.14

    Google Scholar 

  • Cereijido M, Valdes J, Shoshani L, Contreras RG (1998) Role of tight junctions in establishing and maintaining cell polarity. Annu Rev Physiol 60:161–177

    Article  PubMed  CAS  Google Scholar 

  • Cereijido M, Shoshani L, Contreras RG (2000) Molecular physiology and pathophysiology of tight junctions. I. Biogenesis of tight junctions and epithelial polarity. Am J Physiol Gastrointest Liver Physiol 279:G477–G482

    PubMed  CAS  Google Scholar 

  • Cereijido M, Contreras RG, Flores-Benitez D, Flores-Maldonado C, Larre I, Ruiz A, Shoshani L (2007) New diseases derived or associated with the tight junction. Arch Med Res 38:465–478

    Article  PubMed  CAS  Google Scholar 

  • Colegio OR, Van Itallie C, Rahner C, Anderson JM (2003) Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am J Physiol Cell Physiol 284:C1346–C1354

    PubMed  CAS  Google Scholar 

  • Dallos P, Harris D (1978) Properties of auditory nerve responses in absence of outer hair cells. J Neurophysiol 41:365–383

    PubMed  CAS  Google Scholar 

  • Dantzler WH (2003) Regulation of renal proximal and distal tubule transport: sodium, chloride and organic anions. Comp Biochem Physiol [A] Mol Integr Physiol 136:453–478

    Article  Google Scholar 

  • Farquhar MG, Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17:375–412

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Sasaki H, Tsukita S (1999) Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol 147:891–903

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Furuse K, Sasaki H, Tsukita S (2001) Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol 153:263–272

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, Noda T, Kubo A, Tsukita S (2002) Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 156:1099–1111

    Article  PubMed  CAS  Google Scholar 

  • Gow A, Southwood CM, Li JS, Pariali M, Riordan GP, Brodie SE, Danias J, Bronstein JM, Kachar B, Lazzarini RA (1999) CNS myelin and Sertoli cell tight junction strands are absent in Osp/claudin-11 null mice. Cell 99:649–659

    Article  PubMed  CAS  Google Scholar 

  • Gow A, Davies C, Southwood CM, Frolenkov G, Chrustowski M, Ng L, Yamauchi D, Marcus DC, Kachar B (2004) Deafness in claudin 11-null mice reveals the critical contribution of basal cell tight junctions to stria vascularis function. J Neurosci 24:7051–7062

    Article  PubMed  CAS  Google Scholar 

  • Hadj-Rabia S, Baala L, Vabres P, Hamel-Teillac D, Jacquemin E, Fabre M, Lyonnet S, De Prost Y, Munnich A, Hadchouel M, Smahi A (2004) Claudin-1 gene mutations in neonatal sclerosing cholangitis associated with ichthyosis: a tight junction disease. Gastroenterology 127:1386–1390

    Article  PubMed  CAS  Google Scholar 

  • Hebert SC (1999) Molecular mechanisms. Semin Nephrol 19:504–523

    PubMed  CAS  Google Scholar 

  • Hirano T, Kobayashi N, Itoh T, Takasuga A, Nakamaru T, Hirotsune S, Sugimoto Y (2000) Null mutation of PCLN-1/claudin-16 results in bovine chronic interstitial nephritis. Genome Res 10:659–663

    Article  PubMed  CAS  Google Scholar 

  • Hou J, Shan Q, Wang T, Gomes AS, Yan Q, Paul DL, Bleich M, Goodenough DA (2007) Transgenic RNAi depletion of claudin-16 and the renal handling of magnesium. J Biol Chem 282:17114-17122

    Article  PubMed  CAS  Google Scholar 

  • Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171:939–945

    Article  PubMed  CAS  Google Scholar 

  • Kitajiri S, Miyamoto T, Mineharu A, Sonoda N, Furuse K, Hata M, Sasaki H, Mori Y, Kubota T, Ito J, Furuse M, Tsukita S (2004a) Compartmentalization established by claudin-11-based tight junctions in stria vascularis is required for hearing through generation of endocochlear potential. J Cell Sci 117:5087–5096

    Article  PubMed  CAS  Google Scholar 

  • Kitajiri SI, Furuse M, Morita K, Saishin-Kiuchi Y, Kido H, Ito J, Tsukita S (2004b) Expression patterns of claudins, tight junction adhesion molecules, in the inner ear. Hear Res 187:25–34

    Article  PubMed  CAS  Google Scholar 

  • Kiuchi-Saishin Y, Gotoh S, Furuse M, Takasuga A, Tano Y, Tsukita S (2002) Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol 13:875–886

    PubMed  CAS  Google Scholar 

  • Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, Vitzthum H, Suzuki Y, Luk JM, Becker C, Schlingmann KP, Schmid M, Rodriguez-Soriano J, Ariceta G, Cano F, Enriquez R, Juppner H, Bakkaloglu SA, Hediger MA, Gallati S, Neuhauss SC, Nurnberg P, Weber S (2006) Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 79:949–957

    Article  PubMed  CAS  Google Scholar 

  • Li WY, Huey CL, Yu AS (2004) Expression of claudin-7 and -8 along the mouse nephron. Am J Physiol Renal Physiol 286:F1063–F1071

    Article  PubMed  CAS  Google Scholar 

  • Madara JL (1998) Regulation of the movement of solutes across tight junctions. Annu Rev Physiol 60:143–159

    Article  PubMed  CAS  Google Scholar 

  • Mandell KJ, Parkos CA (2005) The JAM family of proteins. Adv Drug Deliv Rev 57:857–867

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto T, Morita K, Takemoto D, Takeuchi K, Kitano Y, Miyakawa T, Nakayama K, Okamura Y, Sasaki H, Miyachi Y, Furuse M, Tsukita S (2005) Tight junctions in Schwann cells of peripheral myelinated axons: a lesson from claudin-19-deficient mice. J Cell Biol 169:527–538

    Article  PubMed  CAS  Google Scholar 

  • Morita K, Furuse M, Fujimoto K, Tsukita S (1999) Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci USA 96:511–516

    Article  PubMed  CAS  Google Scholar 

  • Naderi AS, Reilly RF Jr (2008) Hereditary etiologies of hypomagnesemia. Nat Clin Pract Nephrol 4:80–89

    Article  PubMed  CAS  Google Scholar 

  • Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660

    Article  PubMed  CAS  Google Scholar 

  • Piepenhagen PA, Peters LL, Lux SE, Nelson WJ (1995) Differential expression of Na(+)-K(+)-ATPase, ankyrin, fodrin, and E-cadherin along the kidney nephron. Am J Physiol 269:C1417–C1432

    PubMed  CAS  Google Scholar 

  • Reyes JL, Lamas M, Martin D, Carmen Namorado M del, Islas S, Luna J, Tauc M, Gonzalez-Mariscal L (2002) The renal segmental distribution of claudins changes with development. Kidney Int 62:476–487

    Article  PubMed  CAS  Google Scholar 

  • Riazuddin S, Ahmed ZM, Fanning AS, Lagziel A, Kitajiri S, Ramzan K, Khan SN, Chattaraj P, Friedman PL, Anderson JM, Belyantseva IA, Forge A, Riazuddin S, Friedman TB (2006) Tricellulin is a tight-junction protein necessary for hearing. Am J Hum Genet 79:1040–1051

    Article  PubMed  CAS  Google Scholar 

  • Ryan A, Dallos P (1975) Effect of absence of cochlear outer hair cells on behavioural auditory threshold. Nature 253:44–46

    Article  PubMed  CAS  Google Scholar 

  • Salt AN, Melichar I, Thalmann R (1987) Mechanisms of endocochlear potential generation by stria vascularis. Laryngoscope 97:984–991

    Article  PubMed  CAS  Google Scholar 

  • Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, Casari G, Bettinelli A, Colussi G, Rodriguez-Soriano J, McCredie D, Milford D, Sanjad S, Lifton RP (1999) Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285:103–106

    Article  PubMed  CAS  Google Scholar 

  • Tamura A, Kitano Y, Hata M, Katsuno T, Moriwaki K, Sasaki H, Hayashi H, Suzuki Y, Noda T, Furuse M, Tsukita S, Tsukita S (2008) Megaintestine in claudin-15-deficient mice. Gastroenterology 134:523–534

    Article  PubMed  CAS  Google Scholar 

  • Tsukita S, Furuse M (2000) Pores in the wall: claudins constitute tight junction strands containing aqueous pores. J Cell Biol 149:13–16

    Article  PubMed  CAS  Google Scholar 

  • Tsukita S, Furuse M (2002) Claudin-based barrier in simple and stratified cellular sheets. Curr Opin Cell Biol 14:531–536

    Article  PubMed  CAS  Google Scholar 

  • Turksen K, Troy TC (2002) Permeability barrier dysfunction in transgenic mice overexpressing claudin 6. Development 129:1775–1784

    PubMed  CAS  Google Scholar 

  • Van Itallie CM, Anderson JM (2006) Claudins and epithelial paracellular transport. Annu Rev Physiol 68:403–429

    Article  PubMed  Google Scholar 

  • Van Itallie CM, Fanning AS, Anderson JM (2003) Reversal of charge selectivity in cation or anion-selective epithelial lines by expression of different claudins. Am J Physiol Renal Physiol 285:F1078–F1084

    PubMed  Google Scholar 

  • Wilcox ER, Burton QL, Naz S, Riazuddin S, Smith TN, Ploplis B, Belyantseva I, Ben-Yosef T, Liburd NA, Morell RJ, Kachar B, Wu DK, Griffith AJ, Riazuddin S, Friedman TB (2001) Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell 104:165–172

    Article  PubMed  CAS  Google Scholar 

  • Yi X, Wang Y, Yu FS (2000) Corneal epithelial tight junctions and their response to lipopolysaccharide challenge. Invest Ophthalmol Vis Sci 41:4093–4100

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Thomas Friedman for the anti-prestin and anti-claudin 14 antibodies, Karen Avraham for the use of her ABR system, Hoda Awad for technical assistance, and Thomas Friedman and James Anderson for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamar Ben-Yosef.

Additional information

This work was supported by the Israel Science Foundation (grant no. 24/05) and by NIDCD/NIH intramural research funds (Z01-DC-00039–11).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elkouby-Naor, L., Abassi, Z., Lagziel, A. et al. Double gene deletion reveals lack of cooperation between claudin 11 and claudin 14 tight junction proteins. Cell Tissue Res 333, 427–438 (2008). https://doi.org/10.1007/s00441-008-0621-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-008-0621-9

Keywords

Navigation