Skip to main content
Log in

Co-localisation of Kir4.1 and AQP4 in rat and human cochleae reveals a gap in water channel expression at the transduction sites of endocochlear K+ recycling routes

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Sensory transduction in the cochlea depends on perilymphatic-endolymphatic potassium (K+) recycling. It has been suggested that the epithelial supporting cells (SCs) of the cochlear duct may form the intracellular K+ recycling pathway. Thus, they must be endowed with molecular mechanisms that facilitate K+ uptake and release, along with concomitant osmotically driven water movements. As yet, no molecules have been described that would allow for volume-equilibrated transepithelial K+ fluxes across the SCs. This study describes the subcellular co-localisation of the Kir4.1 K+ channel (Kir4.1) and the aquaporin-4 water channel (AQP4) in SCs, on the basis of immunohistochemical double-labelling experiments in rat and human cochleae. The results of this study reveal the expression of Kir4.1 in the basal or basolateral membranes of the SCs in the sensory domain of the organ of Corti that are adjacent to hair cells and in the non-sensory domains of the inner and outer sulci that abut large extracellular fluid spaces. The SCs of the inner sulcus (interdental cells, inner sulcus cells) and the outer sulcus (Hensen’s cells, outer sulcus cells) display the co-localisation of Kir4.1 and AQP4 expression. However, the SCs in the sensory domain of the organ of Corti reveal a gap in the expression of AQP4. The outer pillar cell is devoid of both Kir4.1 and AQP4. The subcellular co-localisation of Kir4.1 and AQP4 in the SCs of the cochlea described in this study resembles that of the astroglia of the central nervous system and the glial Mueller cells in the retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AQP4:

aquaporin-4

Kir4.1:

inwardly rectifying potassium channel Kir4.1

EP:

endocochlear potential

HBSS:

Hanks’ balanced saline solution

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

PTA:

pure tone audiometry

IDC:

interdental cell

ISC-sl:

inner sulcus cell near the spiral limbus

ISC-oc:

inner sulcus cell near the organ of Corti

IHC:

inner hair cell

IPhC:

inner phalangeal cell

IPC:

inner pillar cell

OPC:

outer pillar cell

OHC:

outer hair cell

DC:

outer phalangeal cell (Deiters’ cell)

HC:

Hensen’s cell

CC:

Claudius cell

OSC:

outer sulcus cell

SV:

stria vascularis

SCs:

supporting cells

References

  • Adams ME, Mueller HA, Froehner SC (2001) In vivo requirement of the alpha-syntrophin PDZ domain for the sarcolemmal localization of nNOS and aquaporin-4. J Cell Biol 155:113–122

    Article  PubMed  CAS  Google Scholar 

  • Ando M, Takeuchi S (1999) Immunological identification of an inward rectifier K + channel (Kir4.1) in the intermediate cell (melanocyte) of the cochlear stria vascularis of gerbils and rats. Cell Tissue Res 298:179–183

    Article  PubMed  CAS  Google Scholar 

  • Angelborg C, Engstrom H (1972) Supporting elements in the organ of Corti. I. Fibrillar structures in the supporting cells of the organ of Corti of mammals. Acta Otolaryngol Suppl 301:49–46

    Article  PubMed  CAS  Google Scholar 

  • Angelini E, Teixeira M, Aran JM, Ferrary E (1998) Taurine entry into perilymph of the guinea pig. Eur Arch Oto Rhino Laryngol 255:331–333

    Article  CAS  Google Scholar 

  • Bobbin RP, Ceasar G, Fallon M (1990) Potassium induced release of GABA and other substances from the guinea pig cochlea. Hear Res 46:83–93

    Article  PubMed  CAS  Google Scholar 

  • Boettger T, Hubner CA, Maier H, Rust MB, Beck FX, Jentsch TJ (2002) Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature 416:874–878

    Article  PubMed  CAS  Google Scholar 

  • Boettger T, Rust MB, Maier H, Seidenbecher T, Schweizer M, Keating DJ, Faulhaber J, Ehmke H, Pfeffer C, Scheel O, Lemcke B, Horst J, Leuwer R, Pape HC, Volkl H, Hubner CA, Jentsch TJ (2003) Loss of K-Cl co-transporter KCC3 causes deafness, neurodegeneration and reduced seizure threshold. EMBO J 22:5422–5434

    Article  PubMed  CAS  Google Scholar 

  • Chiba T, Marcus DC (2001) Basolateral K + conductance establishes driving force for cation absorption by outer sulcus epithelial cells. J Membr Biol 184:101–112

    Article  PubMed  CAS  Google Scholar 

  • Christensen N, D'Souza M, Zhu X, Frisina RD (2009) Age-related hearing loss: aquaporin 4 gene expression changes in the mouse cochlea and auditory midbrain. Brain Res 1253:27–34

    Article  PubMed  CAS  Google Scholar 

  • Corey DP, Hudspeth AJ (1983) Analysis of the microphonic potential of the bullfrog's sacculus. J Neurosci 3:942–961

    PubMed  CAS  Google Scholar 

  • Cowan CA, Yokoyama N, Bianchi LM, Henkemeyer M, Fritzsch B (2000) EphB2 guides axons at the midline and is necessary for normal vestibular function. Neuron 26:417–430

    Article  PubMed  CAS  Google Scholar 

  • Crouch JJ, Sakaguchi N, Lytle C, Schulte BA (1997) Immunohistochemical localization of the Na-K-Cl co-transporter (NKCC1) in the gerbil inner ear. J Histochem Cytochem 45:773–778

    Article  PubMed  CAS  Google Scholar 

  • Dravis C, Wu T, Chumley MJ, Yokoyama N, Wei S, Wu DK, Marcus DC, Henkemeyer M (2007) EphB2 and ephrin-B2 regulate the ionic homeostasis of vestibular endolymph. Hear Res 223:93–104

    Article  PubMed  CAS  Google Scholar 

  • Engstrom H (1960) The cortilymph, the third lymph of the inner ear. Acta Morphol Neerl Scand 3:195–204

    PubMed  CAS  Google Scholar 

  • Hibino H, Kurachi Y (2006) Molecular and physiological bases of the K + circulation in the mammalian inner ear. Physiology 21:336–345

    Article  PubMed  CAS  Google Scholar 

  • Hibino H, Horio Y, Inanobe A, Doi K, Ito M, Yamada M, Gotow T, Uchiyama Y, Kawamura M, Kubo T, Kurachi Y (1997) An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential. J Neurosci 17:4711–4721

    PubMed  CAS  Google Scholar 

  • Hirt B, Penkova ZH, Eckhard A, Liu W, Rask-Andersen H, Muller M, Lowenheim H (2010) The subcellular distribution of aquaporin 5 in the cochlea reveals a water shunt at the perilymph–endolymph barrier. Neuroscience 168:957–970

    Article  PubMed  CAS  Google Scholar 

  • Hirt B, Gleiser C, Eckhard A, Mack AF, Müller M, Wolburg H, Lowenheim H (2011) All functional aquaporin-4 isoforms are expressed in the rat cochlea and contribute to the formation of orthogonal arrays of particles. Neuroscience 189:79–92

    Article  PubMed  CAS  Google Scholar 

  • Huang D, Chen P, Chen S, Nagura M, Lim DJ, Lin X (2002) Expression patterns of aquaporins in the inner ear: evidence for concerted actions of multiple types of aquaporins to facilitate water transport in the cochlea. Hear Res 165:85–95

    Article  PubMed  CAS  Google Scholar 

  • Iurato S (1961) Submicroscopic structure of the membranous labyrinth. 2. The epithelium of Corti's organ. Z Zellforsch Mikrosk Anat 53:259–298

    Article  PubMed  CAS  Google Scholar 

  • Jagger DJ, Nevill G, Forge A (2010) The membrane properties of cochlear root cells are consistent with roles in potassium recirculation and spatial buffering. J Assoc Res Otolaryngol 11:435–448

    Article  Google Scholar 

  • Jenison GL, Bobbin RP, Thalmann R (1985) Potassium-induced release of endogenous amino acids in the guinea pig cochlea. J Neurochem 44:1845–1853

    Article  PubMed  CAS  Google Scholar 

  • Johnstone BM, Sellick PM (1972) Dynamic changes in cochlear potentials and endolymph concentrations. J Otolaryngol Soc Aust 3:317–319

    PubMed  CAS  Google Scholar 

  • Johnstone BM, Patuzzi R, Syka J, Sykova E (1989) Stimulus-related potassium changes in the organ of Corti of guinea-pig. J Physiol 408:77–92

    PubMed  CAS  Google Scholar 

  • Kikuchi T, Adams JC, Miyabe Y, So E, Kobayashi T (2000) Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in hereditary nonsyndromic deafness. Medical Electron Microsc 33:51–56

    Article  CAS  Google Scholar 

  • Konishi T, Hamrick PE (1978) Ion transport in the cochlea of guinea pig. II. Chloride transport. Acta Otolaryngol 86:176–184

    Article  PubMed  CAS  Google Scholar 

  • Kubisch C, Schroeder BC, Friedrich T, Lutjohann B, El-Amraoui A, Marlin S, Petit C, Jentsch TJ (1999) KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96:437–446

    Article  PubMed  CAS  Google Scholar 

  • Lang F, Vallon V, Knipper M, Wangemann P (2007) Functional significance of channels and transporters expressed in the inner ear and kidney. American J Physiol Cell Physiol 293:C1187–C1208

    Article  CAS  Google Scholar 

  • Li J, Verkman AS (2001) Impaired hearing in mice lacking aquaporin-4 water channels. J Biol Chem 276:31233–31237

    Article  PubMed  CAS  Google Scholar 

  • Marcus DC, Sunose H, Liu J, Shen Z, Scofield MA (1997) P2U purinergic receptor inhibits apical IsK/KvLQT1 channel via protein kinase C in vestibular dark cells. Am J Physiol 273:C2022–C2029

    PubMed  CAS  Google Scholar 

  • Marcus DC, Wu T, Wangemann P, Kofuji P (2002) KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. American J Physiol Cell Physiol 282:C403–C407

    CAS  Google Scholar 

  • Matthews TM, Duncan RK, Zidanic M, Michael TH, Fuchs PA (2005) Cloning and characterization of SK2 channel from chicken short hair cells. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191:491–503

    Article  PubMed  CAS  Google Scholar 

  • McFadden D (2009) Masculinization of the mammalian cochlea. Hear Res 252:37–48

    Google Scholar 

  • Mhatre AN, Stern RE, Li J, Lalwani AK (2002) Aquaporin 4 expression in the mammalian inner ear and its role in hearing. Biochem Biophys Res Commun 297:987–996

    Article  PubMed  CAS  Google Scholar 

  • Miyabe Y, Kikuchi T, Kobayashi T (2002) Comparative immunohistochemical localizations of aquaporin-1 and aquaporin-4 in the cochleae of three different species of rodents. Tohoku J Exp Med 196:247–257

    Article  PubMed  Google Scholar 

  • Moe SE, Sorbo JG, Sogaard R, Zeuthen T, Petter Ottersen O, Holen T (2008) New isoforms of rat Aquaporin-4. Genomics 91:367–377

    Article  PubMed  CAS  Google Scholar 

  • Mountain DC, Cody AR (1999) Multiple modes of inner hair cell stimulation. Hear Res 132:1–14

    Article  PubMed  CAS  Google Scholar 

  • Nagelhus EA, Veruki ML, Torp R, Haug FM, Laake JH, Nielsen S, Agre P, Ottersen OP (1998) Aquaporin-4 water channel protein in the rat retina and optic nerve: polarized expression in Muller cells and fibrous astrocytes. J Neurosci 18:2506–2519

    PubMed  CAS  Google Scholar 

  • Nagelhus EA, Mathiisen TM, Ottersen OP (2004) Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience 129:905–913

    Article  PubMed  CAS  Google Scholar 

  • Nemzou NR, Bulankina AV, Khimich D, Giese A, Moser T (2006) Synaptic organization in cochlear inner hair cells deficient for the CaV1.3 (alpha1D) subunit of L-type Ca2+ channels. Neuroscience 141:1849–1860

    Article  CAS  Google Scholar 

  • Nicchia GP, Ficarella R, Rossi A, Giangreco I, Nicolotti O, Carotti A, Pisani F, Estivill X, Gasparini P, Svelto M, Frigeri A (2011) D184E mutation in aquaporin-4 gene impairs water permeability and links to deafness. Neuroscience 197:80–88

    Article  PubMed  CAS  Google Scholar 

  • Olson ES, Mountain DC (1994) Mapping the cochlear partition's stiffness to its cellular architecture. J Acoust Soc Am 95:395–400

    Article  PubMed  CAS  Google Scholar 

  • Patuzzi R (2011) Ion flow in stria vascularis and the production and regulation of cochlear endolymph and the endolymphatic potential. Hear Res 277:4–19

    Article  PubMed  Google Scholar 

  • Puel JL, Uziel A (1987) Correlative development of cochlear action potential sensitivity, latency, and frequency selectivity. Brain Res 465:179–188

    PubMed  CAS  Google Scholar 

  • Roth B, Bruns V (1992a) Postnatal development of the rat organ of Corti. I. General morphology, basilar membrane, tectorial membrane and border cells. Anat Embryol 185:559–569

    Article  PubMed  CAS  Google Scholar 

  • Roth B, Bruns V (1992b) Postnatal development of the rat organ of Corti. II. Hair cell receptors and their supporting elements. Anat Embryol 185:571–581

    Article  PubMed  CAS  Google Scholar 

  • Salt AN, Ohyama K (1993) Accumulation of potassium in scala vestibuli perilymph of the mammalian cochlea. Ann Otol Rhinol Laryngol 102:64–70

    PubMed  CAS  Google Scholar 

  • Sorani MD, Zador Z, Hurowitz E, Yan D, Giacomini KM, Manley GT (2008) Novel variants in human Aquaporin-4 reduce cellular water permeability. Hum Mol Genet 17:2379–2389

    Article  PubMed  CAS  Google Scholar 

  • Spicer SS, Schulte BA (1996) The fine structure of spiral ligament cells relates to ion return to the stria and varies with place–frequency. Hear Res 100:80–100

    Article  PubMed  CAS  Google Scholar 

  • Spicer SS, Schulte BA (1998) Evidence for a medial K + recycling pathway from inner hair cells. Hear Res 118:1–12

    Article  PubMed  CAS  Google Scholar 

  • Spicer SS, Salvi RJ, Schulte BA (1999) Ablation of inner hair cells by carboplatin alters cells in the medial K(+) flow route and disrupts tectorial membrane. Hear Res 136:139–150

    Article  PubMed  CAS  Google Scholar 

  • Spicer SS, Salvi RJ, Schulte BA (2000a) Ultrastructural changes in the spiral limbus associated with carboplatin-induced ablation of inner hair cells. Cell Tissue Res 302:1–10

    Article  PubMed  CAS  Google Scholar 

  • Spicer SS, Thomopoulos GN, Schulte BA (2000b) Structural evidence for ion transport and tectorial membrane maintenance in the gerbil limbus. Hear Res 143:147–161

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Kikuchi T, Ikeda K (2004) Endocochlear potential and endolymphatic K + changes induced by gap junction blockers. Acta Otolaryngol 124:902–906

    Article  PubMed  CAS  Google Scholar 

  • Takumi Y, Nagelhus EA, Eidet J, Matsubara A, Usami S, Shinkawa H, Nielsen S, Ottersen OP (1998) Select types of supporting cell in the inner ear express aquaporin-4 water channel protein. Eur J Neurosci 10:3584–3595

    Article  PubMed  CAS  Google Scholar 

  • Taylor RR, Jagger DJ, Forge A (2012) Defining the cellular environment in the organ of Corti following extensive hair cell loss: a basis for future sensory cell replacement in the cochlea. PLoS One 7:e30577

    Article  PubMed  CAS  Google Scholar 

  • Usami S, Ottersen OP (1995) The localization of taurine-like immunoreactivity in the organ of Corti: a semiquantitative, post-embedding immuno-electron microscopic analysis in the rat with some observations in the guinea pig. Brain Res 676:277–284

    Article  PubMed  CAS  Google Scholar 

  • Wangemann P (2006) Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol 576:11–21

    Article  PubMed  CAS  Google Scholar 

  • Weber PC, Cunningham CD, Schulte BA (2001) Potassium recycling pathways in the human cochlea. Laryngoscope 111:1156–1165

    Article  PubMed  CAS  Google Scholar 

  • Zidanic M, Brownell WE (1990) Fine structure of the intracochlear potential field. I. The silent current. Biophys J 57:1253–1268

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Hans-Joachim Wagner and Prof. Hans-Peter Zenner for their continued support. We thank Dr. Karina Gültig, Andrea Müller and Xenia Härtel for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Löwenheim.

Additional information

This study was supported by the “fortüne” program (Project number: 1477-0-0) of the University of Tübingen Medical School.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckhard, A., Gleiser, C., Rask-Andersen, H. et al. Co-localisation of Kir4.1 and AQP4 in rat and human cochleae reveals a gap in water channel expression at the transduction sites of endocochlear K+ recycling routes. Cell Tissue Res 350, 27–43 (2012). https://doi.org/10.1007/s00441-012-1456-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1456-y

Keywords

Navigation