Skip to main content

Advertisement

Log in

Electrophysiology and glaucoma: current status and future challenges

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Visual electrophysiology allows non-invasive monitoring of the function of most processing stages along the visual pathway. Here, we consider which of the available methods provides the most information concerning glaucomatous optic nerve disease. The multifocal electroretinogram (ERG), although often employed, is less affected in glaucoma than two direct measurements of retinal ganglion cell function, namely the pattern ERG (PERG) and the photopic negative response (PhNR) of the ERG. For the PERG, longitudinal studies have been reported, suggesting that this method can be used for the early detection of glaucoma; for the PhNR, no longitudinal study is available as yet. The multifocal PERG can spatially resolve ganglion cell function but its glaucomatous reduction is typically panretinal, even with only local field changes and so, its topographic resolution is of no advantage in glaucoma. The multifocal visual evoked potential promises objective perimetry and shows sensitivity and specificity comparable with standard automated perimetry but has not been established as a routine tool to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arden GB, Carter RM, Hogg C, Siegel IM, Margolis S (1979) A gold foil electrode: extending the horizons for clinical electroretinography. Invest Ophthalmol Vis Sci 18:421–426

    PubMed  CAS  Google Scholar 

  • Bach M (2001) Electrophysiological approaches for early detection of glaucoma. Eur J Ophthalmol 11 (Suppl 2):S41–S49

    PubMed  Google Scholar 

  • Bach M (2007) Preparation and montage of DTL-electrodes. http://www.michaelbach.de/dtl.html

  • Bach M, Hoffmann MB (2008) Update on the pattern electroretinogram in glaucoma. Optom Vis Sci 85:386–395

    Article  PubMed  Google Scholar 

  • Bach M, Mathieu M (2004) Different effect of dioptric defocus vs. light scatter on the pattern electroretinogram (PERG). Doc Ophthalmol 108:99–106

    Article  PubMed  Google Scholar 

  • Bach M, Poloschek CM (2010) Elektrophysiologische Befunde beim Glaukom. Excerpta Med 2010:28–39

    Google Scholar 

  • Bach M, Hiss P, Röver J (1988) Check-size specific changes of pattern electroretinogram in patients with early open-angle glaucoma. Doc Ophthalmol 69:315–322

    Article  PubMed  CAS  Google Scholar 

  • Bach M, Gerling J, Geiger K (1992a) Optic atrophy reduces the pattern-electroretinogram for both fine and coarse stimulus patterns. Clin Vision Sci 7:327–333

    Google Scholar 

  • Bach M, Pfeiffer N, Birkner-Binder D (1992b) Pattern-electroretinogram reflects diffuse retinal damage in early glaucoma. Clin Vision Sci 7:335–340

    Google Scholar 

  • Bach M, Sulimma F, Gerling J (1998) Little local correlation of the pattern electroretinogram (PERG) and visual field measures in early glaucoma. Doc Ophthalmol 94:253–263

    Article  CAS  Google Scholar 

  • Bach M, Unsoeld AS, Philippin H, Staubach F, Maier P, Walter HS, Bomer TG, Funk J (2006) Pattern ERG as an early glaucoma indicator in ocular hypertension: a long-term, prospective study. Invest Ophthalmol Vis Sci 47:4881–4887

    Article  PubMed  Google Scholar 

  • Bach M, Brigell MG, Hawlina M, Holder GE, Johnson MA, McCulloch DL, Meigen T, Viswanathan S (2013) ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Doc Ophthalmol 126:1–7

    Article  PubMed  Google Scholar 

  • Baker CL, Hess RR, Olsen BT, Zrenner E (1988) Current source density analysis of linear and non-linear components of the primate electroretinogram. J Physiol (Lond) 407:155–176

    Google Scholar 

  • Banitt MR, Ventura LM, Feuer WJ, Savatovsky E, Luna G, Shif O, Bosse B, Porciatti V (2013) Progressive loss of retinal ganglion cell function precedes structural loss by several years in glaucoma suspects. Invest Ophthalmol Vis Sci. doi:10.1167/iovs.12-11026

  • Baseler HA, Sutter EE, Klein SA, Carney T (1994) The topography of visual evoked response properties across the visual field. Electroencephalogr Clin Neurophysiol 90:65–81

    Article  PubMed  CAS  Google Scholar 

  • Bengtsson B (2002) Evaluation of VEP perimetry in normal subjects and glaucoma patients. Acta Ophthalmol Scand 80:620–626

    Article  PubMed  Google Scholar 

  • Bjerre A, Grigg JR, Parry NRA, Henson DB (2004) Test–retest variability of multifocal visual evoked potential and SITA standard perimetry in glaucoma. Invest Ophthalmol Vis Sci 45:4035–4040

    Article  PubMed  Google Scholar 

  • Bobak P, Bodis-Wollner I, Harnois C, Maffei L, Mylin L, Podos S, Thornton J (1983) Pattern electroretinograms and visual-evoked potentials in glaucoma and multiple sclerosis. Am J Ophthalmol 96:72–83

    PubMed  CAS  Google Scholar 

  • Bode SF, Jehle T, Bach M (2011) Pattern electroretinogram (PERG) in glaucoma suspects—new findings from a longitudinal study. Invest Ophthalmol Vis Sci 52:4300–4306

    Article  PubMed  Google Scholar 

  • Bowd C, Zangwill LM, Berry CC, Blumenthal EZ, Vasile C, Sanchez-Galeana C, Bosworth CF, Sample PA, Weinreb RN (2001) Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Invest Ophthalmol Vis Sci 42:1993–2003

    PubMed  CAS  Google Scholar 

  • Bowd C, Vizzeri G, Tafreshi A, Zangwill Linda M, Sample Pamela A, Weinreb Robert N (2009) Diagnostic accuracy of pattern electroretinogram optimized for glaucoma detection. Ophthalmology 116:437–443

    Article  PubMed  Google Scholar 

  • Bui B, He Z, Vingrys A, Nguyen C, Wong VHY, Fortune B (2013) Using the electroretinogram to understand how intraocular pressure elevation affects the rat retina. J Ophthalmol 2013:1–15

    Article  Google Scholar 

  • Coupland SG, Janaky M (1989) ERG electrode in pediatric patients: comparison of DTL fiber, PVA-gel, and non-corneal skin electrodes. Doc Ophthalmol 71:427–433

    Article  PubMed  CAS  Google Scholar 

  • Dawson WW, Trick GL, Litzkow CA (1979) Improved electrode for electroretinography. Invest Ophthalmol Vis Sci 18:988–991

    PubMed  CAS  Google Scholar 

  • Forte R, Ambrosio L, Bonavolontà P, Ambrosio G (2010) Pattern electroretinogram optimized for glaucoma screening (PERGLA) and retinal nerve fiber thickness in suspected glaucoma and ocular hypertension. Doc Ophthalmol 120:187–192

    Article  PubMed  Google Scholar 

  • Fortune B, Bearse MA, Cioffi George A, Johnson CA (2002) Selective loss of an oscillatory component from temporal retinal multifocal ERG responses in glaucoma. Invest Ophthalmol Vis Sci 43:2638–2647

    PubMed  Google Scholar 

  • Fortune B, Goh K, Demirel S, Novitzki K, Mansberger SL, Johnson CA, Cioffi GA (2004) Detection of glaucomatous visual field loss using multifocal VEP. Perimetry Update 2002/2003. In: Henson D, Wall M (eds) Proceedings of the XVth International Perimetric Society Meeting, Stratford-upon-Avon, England, June 26-29, 2002. Kugler, The Hague, pp 251–260

    Google Scholar 

  • Fortune B, Demirel S, Zhang X, Hood DC, Patterson E, Jamil A, Mansberger SL, Cioffi GA, Johnson CA (2007) Comparing multifocal VEP and standard automated perimetry in high-risk ocular hypertension and early glaucoma. Invest Ophthalmol Vis Sci 48:1173–1180

    Article  PubMed  Google Scholar 

  • Fortune B, Shaban D, Bui BV (2009) Multifocal visual evoked potential responses to pattern-reversal, pattern-onset, pattern-offset, and sparse pulse stimuli. Vis Neurosci 26:227–235

    Article  PubMed  Google Scholar 

  • Garway-Heath DF, Hitchings RA (1998) Sources of bias in studies of optic disc and retinal nerve fibre layer morphology. Br J Ophthalmol 82:986

    Article  PubMed  CAS  Google Scholar 

  • Garway-Heath DF, Holder GE, Fitzke FW, Hitchings RA (2002) Relationship between electrophysiological, psychophysical, and anatomical measurements in glaucoma. Invest Ophthalmol Vis Sci 43:2213–2220

    PubMed  Google Scholar 

  • Graham SL (2012) Where are we going with approaches such as PeRG, VeP, sWAP and FDT? Glaucoma Now 1:6–8

    Google Scholar 

  • Groneberg A, Teping C (1980) Topodiagnostik von Sehstörungen durch Ableitung retinaler und kortikaler Antworten auf Umkehr-Kontrastmuster. Ber Dtsch Ophthalmol Ges 77:409–415

    Article  Google Scholar 

  • Harrison JM, O’Connor PS, Young RSL, Kincaid M, Bentley R (1987) The pattern ERG in man following surgical resection of the optic nerve. Invest Ophthalmol Vis Sci 28:492–499

    PubMed  CAS  Google Scholar 

  • Harrison WW, Viswanathan S, Malinovsky VE (2006) Multifocal pattern electroretinogram: cellular origins and clinical implications. Optom Vis Sci 83:473–485

    Article  PubMed  Google Scholar 

  • Hoffmann MB, Flechner J-J (2008) Slow pattern-reversal stimulation facilitates the assessment of retinal function with multifocal recordings. Clin Neurophysiol 119:409–417

    Article  PubMed  Google Scholar 

  • Hoffmann MB, Straube S, Bach M (2003) Pattern-onset stimulation boosts central multifocal VEP responses. J Vis 3:432–439

    Article  PubMed  Google Scholar 

  • Holder GE (1997) The pattern electroretinogram in anterior visual pathway dysfunction and its relationship to the pattern visual evoked potential: a personal clinical review of 743 eyes. Eye 11:924–934

    Article  PubMed  Google Scholar 

  • Holder GE, Votruba M, Carter AC, Bhattacharya SS, Fitzke FW, Moore AT (1998) Electrophysiological findings in dominant optic atrophy (DOA) linking to the OPA1 locus on chromosome 3q 28-qter. Doc Ophthalmol 95:217–228

    Article  PubMed  Google Scholar 

  • Hood DC (2003) Objective measurement of visual function in glaucoma. Curr Opin Ophthalmol 14:78–82

    Article  PubMed  Google Scholar 

  • Hood DC, Greenstein VC (2003) Multifocal VEP and ganglion cell damage: applications and limitations for the study of glaucoma. Prog Retin Eye Res 22:201–251

    Article  PubMed  Google Scholar 

  • Hood DC, Greenstein VC, Holopigian K, Bauer R, Firoz B, Liebmann JM, Odel JG, Ritch R (2000) An attempt to detect glaucomatous damage to the inner retina with the multifocal ERG. Invest Ophthalmol Vis Sci 41:1570–1579

    PubMed  CAS  Google Scholar 

  • Hood DC, Frishman LJ, Saszik S, Viswanathan S (2002a) Retinal origins of the primate multifocal ERG: implications for the human response. Invest Ophthalmol Vis Sci 43:1673–1685

    PubMed  Google Scholar 

  • Hood DC, Greenstein VC, Odel JG, Zhang X, Ritch R, Liebmann JM, Hong JE, Chen CS, Thienprasiddhi P (2002b) Visual field defects and multifocal visual evoked potentials: evidence of a linear relationship. Arch Ophthalmol 120:1672–1681

    Article  PubMed  Google Scholar 

  • Hood DC, Zhang X, Hong JE, Chen CS (2002c) Quantifying the benefits of additional channels of multifocal VEP recording. Doc Ophthalmol 104:303–320

    Article  PubMed  Google Scholar 

  • Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, Palmowski-Wolfe AM (2008) ISCEV guidelines for clinical multifocal electroretinography (2007 edition). Doc Ophthalmol 116:1–11

    Article  PubMed  Google Scholar 

  • Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, Marmor MF, McCulloch DL, Palmowski-Wolfe AM (2012) ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc Ophthalmol 124:1–13

    Article  PubMed  Google Scholar 

  • James AC, Ruseckaite R, Maddess T (2005) Effect of temporal sparseness and dichoptic presentation on multifocal visual evoked potentials. Vis Neurosci 22:45–54

    Article  PubMed  Google Scholar 

  • Jampel HD, Singh K, Lin SC, Chen TC, Francis BA, Hodapp E, Samples JR, Smith SD (2011) Assessment of visual function in glaucoma: a report by the American Academy of Ophthalmology. Ophthalmology 118:986–1002

    Article  PubMed  Google Scholar 

  • Johnson MA, Drum BA, Quigley HA, Sanchez RM, Dunkelberger GR (1989) Pattern-evoked potentials and optic nerve fiber loss in monocular laser-induced glaucoma. Invest Ophthalmol Vis Sci 30:897–907

    PubMed  CAS  Google Scholar 

  • Kakisu Y, Mizota A, Adachi E (1986) Clinical application of the pattern electroretinogram with lid skin electrode. Doc Ophthalmol 63:187–194

    Article  PubMed  CAS  Google Scholar 

  • Klistorner AI, Graham SL (2011) Stimulus method for multifocal visual evoked potential. Patentdocs. http://www.faqs.org/patents/app/20100091245

  • Klistorner AI, Graham SL, Grigg JR, Billson FA (1998) Multifocal topographic visual evoked potential: improving objective detection of local visual field defects. Invest Ophthalmol Vis Sci 39:937–950

    PubMed  CAS  Google Scholar 

  • Klistorner AI, Graham SL, Martins A (2000) Multifocal pattern electroretinogram does not demonstrate localised field defects in glaucoma. Doc Ophthalmol 100:155–165

    Article  PubMed  CAS  Google Scholar 

  • Kramer SA, Ledolter AA, Todorova MG, Schötzau A, Orgül S, Palmowski-Wolfe AM (2013) The 2-global flash mfERG in glaucoma: attempting to increase sensitivity by reducing the focal flash luminance and changing filter settings. Doc Ophthalmol 126:57–67

    Article  PubMed  CAS  Google Scholar 

  • Lai TY, Lai RY, Ngai JW, Chan WM, Li H, Lam DS (2008) First and second-order kernel multifocal electroretinography abnormalities in acute central serous chorioretinopathy. Doc Ophthalmol 116:29–40

    Article  PubMed  Google Scholar 

  • Lindenberg T, Horn FK, Korth M (2003) Multifocal steady-state pattern-reversal electroretinography in glaucoma patients. Ophthalmologe 100:453–458

    PubMed  Google Scholar 

  • Luo X, Frishman LJ (2011) Retinal pathway origins of the pattern electroretinogram (PERG). Invest Ophthalmol Vis Sci 52:8571–8584

    Article  PubMed  Google Scholar 

  • Machida S, Gotoh Y, Toba Y, Ohtaki A, Kaneko M, Kurosaka D (2008) Correlation between photopic negative response and retinal nerve fiber layer thickness and optic disc topography in glaucomatous eyes. Invest Ophthalmol Vis Sci 49:2201–2207

    Article  PubMed  Google Scholar 

  • Maffei L, Fiorentini A (1981) Electroretinographic responses to alternating gratings before and after section of the optic nerve. Science 211:953–954

    Article  Google Scholar 

  • McCulloch DL, Van Boemel GB, Borchert MS (1998) Comparisons of contact lens, foil, fiber and skin electrodes for patterns electroretinograms. Doc Ophthalmol 94:327–340

    Article  CAS  Google Scholar 

  • Mitzdorf U (1988) Evoked potentials and their physiological causes: an access to delocalized cortical activity. In: Basar E (ed) Springer Series in Brain Dynamics, vol 1. Springer, Berlin, pp 140–153

    Google Scholar 

  • North RV, Jones AL, Drasdo N, Wild JM, Morgan JE (2010) Electrophysiological evidence of early functional damage in glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 51:1216–1222

    Article  PubMed  Google Scholar 

  • Palmowski AM, Berninger T, Allgayer R, Andrielis H, Heinemann-Vernaleken B, Rudolph G (1999) Effects of refractive blur on the multifocal electroretinogram. Doc Ophthalmol 99:41–54

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer N, Tillmon B, Bach M (1993) Predictive value of the pattern-electroretinogram in high-risk ocular hypertension. Invest Ophthalmol Vis Sci 34:1710–1715

    PubMed  CAS  Google Scholar 

  • Pieh C, Hoffmann MB, Bach M (2005) The influence of defocus on multifocal visual evoked potentials. Graefes Arch Clin Exp Ophthalmol 243:38–42

    Article  PubMed  Google Scholar 

  • Poloschek CM, Bach M (2009a) Can we do without mydriasis in multifocal ERG recordings? Doc Ophthalmol 118:121–127

    Article  PubMed  Google Scholar 

  • Poloschek CM, Bach M (2009b) The mfERG response topography with scaled stimuli: effect of the stretch factor. Doc Ophthalmol 119:51–58

    Article  PubMed  Google Scholar 

  • Poloschek CM, Bach M (2012) Electrophysiological examination methods in glaucoma diagnostics. Ophthalmologe 109:358–363

    Article  PubMed  CAS  Google Scholar 

  • Porciatti V, Ventura LM (2004) Normative data for a user-friendly paradigm for pattern electroretinogram recording. Ophthalmology 111:161–168

    Article  PubMed  Google Scholar 

  • Porciatti V, Falsini B, Scalia G, Fadda A, Fontanesi G (1988) The pattern electroretinogram by skin electrodes: effect of spatial frequency and age. Doc Ophthalmol 70:117–122

    Article  PubMed  CAS  Google Scholar 

  • Preiser D, Lagreze WA, Bach M, Poloschek CM (2013) Photopic negative response (PhNR) versus Pattern Electroretinogram (PERG) in early glaucoma. Invest Ophthalmol Vis Sci 54:1182–1191

    Article  PubMed  Google Scholar 

  • Rangaswamy NV, Shirato S, Muneyoshi K, Digby BI, Robson JG, Frishman LJ (2007) Effects of spectral characteristics of Ganzfeld stimuli on the photopic negative response (PhNR) of the ERG. Invest Ophthalmol Vis Sci 48:4818–4828

    Article  PubMed  Google Scholar 

  • Raz D, Seeliger MW, Geva AB, Percicot CL, Lambrou GN, Ofri R (2002) The effect of contrast and luminance on mfERG responses in a monkey model of glaucoma. Invest Ophthalmol Vis Sci 43:2027–2035

    PubMed  Google Scholar 

  • Rovamo J (1983) Cortical magnification factor and contrast sensitivity to luminance-modulated chromatic gratings. Acta Physiol Scand 119:365–371

    Article  PubMed  CAS  Google Scholar 

  • Sehi M, Grewal DS, Goodkin ML, Greenfield DS (2010) Reversal of retinal ganglion cell dysfunction after surgical reduction of intraocular pressure. Ophthalmology 117:2329–2336

    Article  PubMed  Google Scholar 

  • Sieving PA, Steinberg RH (1987) Proximal retinal contributions to the intraretinal 8-Hz pattern ERG of cat. J Neurophysiol 57:104–120

    PubMed  CAS  Google Scholar 

  • Sieving PA, Frishman LJ, Steinberg RH (1986) Scotopic threshold response of proximal retina in cat. J Neurophysiol 56:1049–1061

    PubMed  CAS  Google Scholar 

  • Stiefelmeyer S, Neubauer AS, Berninger T, Arden GB, Rudolph G (2004) The multifocal pattern electroretinogram in glaucoma. Vision Res 44:103–112

    Article  PubMed  Google Scholar 

  • Sutter EE (2000) The interpretation of multifocal binary kernels. Doc Ophthalmol 100:49–75

    Article  PubMed  CAS  Google Scholar 

  • Sutter EE (2001) Imaging visual function with the multifocal m-sequence technique. Vis Res 41:1241–1255

    Article  PubMed  CAS  Google Scholar 

  • Sutter EE, Bearse MA (1999) The optic nerve head component of the human ERG. Vis Res 39:419–436

    Article  PubMed  CAS  Google Scholar 

  • Sutter EE, Tran D (1992) The field topography of ERG components in man. I. The photopic luminance response. Vision Res 32:433–446

    Article  PubMed  CAS  Google Scholar 

  • Tafreshi A, Racette L, Weinreb RN, Sample PA, Zangwill LM, Medeiros FA, Bowd C (2010) Pattern electroretinogram and psychophysical tests of visual function for discriminating between healthy and glaucoma eyes. Am J Ophthalmol 149:488–495

    Article  PubMed  Google Scholar 

  • Thompson DA, Drasdo N (1987) An improved method for using the DTL fibre in electroretinography. Ophthalmic Physiol Opt 7:315–319

    Article  PubMed  CAS  Google Scholar 

  • Trick GL (1985) Retinal potentials in patients with primary open-angle glaucoma: physiological evidence for temporal frequency tuning deficits. Invest Ophthalmol Vis Sci 26:1750–1758

    PubMed  CAS  Google Scholar 

  • Van den Berg TJ, Riemslag FC, De Vos GW, Verduyn Lunel HF (1986) Pattern ERG and glaucomatous visual field defects. Doc Ophthalmol 61:335–341

    Article  PubMed  Google Scholar 

  • Ventura LM, Porciatti V (2005) Restoration of retinal ganglion cell function in early glaucoma after intraocular pressure reduction: a pilot study. Ophthalmology 112:20–27

    Article  PubMed  Google Scholar 

  • Ventura LM, Porciatti V (2006) Pattern electroretinogram in glaucoma. Curr Opin Ophthalmol 17:196–202

    Article  PubMed  Google Scholar 

  • Ventura LM, Sorokac N, De Los SR, Feuer WJ, Porciatti V (2006) The relationship between retinal ganglion cell function and retinal nerve fiber thickness in early glaucoma. Invest Ophthalmol Vis Sci 47:3904–3911

    Article  PubMed  Google Scholar 

  • Ventura LM, Golubev I, Feuer WJ, Porciatti V (2011) Pattern electroretinogram progression in glaucoma suspects. J Glaucoma 22:219–225

    Article  Google Scholar 

  • Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith EL (1999) The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci 40:1124–1136

    PubMed  CAS  Google Scholar 

  • Viswanathan S, Frishman LJ, Robson JG (2000) The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci 41:2797–2810

    PubMed  CAS  Google Scholar 

  • Viswanathan S, Frishman LJ, Robson JG, Walters JW (2001) The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci 42:514–522

    PubMed  CAS  Google Scholar 

  • Wanger P, Persson HE (1983) Pattern-reversal electroretinograms in unilateral glaucoma. Invest Ophthalmol Vis Sci 24:749–753

    PubMed  CAS  Google Scholar 

  • Yang A, Swanson WH (2007) A new pattern electroretinogram paradigm evaluated in terms of user friendliness and agreement with perimetry. Ophthalmology 114:671–679

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bach, M., Poloschek, C.M. Electrophysiology and glaucoma: current status and future challenges. Cell Tissue Res 353, 287–296 (2013). https://doi.org/10.1007/s00441-013-1598-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1598-6

Keywords

Navigation