Skip to main content

Advertisement

Log in

Isolation, expansion and characterization of bone marrow-derived mesenchymal stromal cells in serum-free conditions

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Bone marrow-derived mesenchymal stromal cells (BM-MSCs) heralded a new beginning for regenerative medicine and generated tremendous interest as the most promising source for therapeutic application. Most cell therapies require stringent regulatory compliance and prefer the use of serum-free media (SFM) or xeno-free media (XFM) for the MSC production process, starting from the isolation onwards. Here, we report on serum-free isolation and expansion of MSCs and compare them with cells grown in conventional fetal bovine serum (FBS)-containing media as a control. The isolation, proliferation and morphology analysis demonstrated significant differences between MSCs cultured in various SFM/XFM in addition to their difference with FBS controls. BD Mosaic™ Mesenchymal Stem Cell Serum-Free media (BD-SFM) and Mesencult-XF (MSX) supported the isolation, sequential passaging, tri-lineage differentiation potential and acceptable surface marker expression profile of BM-MSCs. Further, MSCs cultured in SFM showed higher immune suppression and hypo-immunogenicity properties, making them an ideal candidate for allogeneic cell therapy. Although cells cultured in control media have a significantly higher proliferation rate, BM-MSCs cultured in BD-SFM or MSX media are the preferred choice to meet regulatory requirements as they do not contain bovine serum. While BM-MSCs cultured in BD-SFM and MSX media adhered to all MSC characteristics, in the case of few parameters, the performance of cells cultured in BD-SFM was superior to that of MSX media. Pre-clinical safety and efficiency studies are required before qualifying SFM or XFM media-derived MSCs for therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agata H, Watanabe N, Ishii Y, Kubo N, Ohshima S, Yamazaki M, Tojo A, Kagami H (2009)Feasibility and efficacy of bone tissue engineering using human bone marrow stromal cellscultivated in serum-free conditions. Biochem Biophys Res Commun 382:353–358

    Google Scholar 

  • Ankrum J, Karp JM (2010) Mesenchymal stem cell therapy: Two steps forward, one step back. Trends Mol Med 16:203–209

    Article  PubMed Central  PubMed  Google Scholar 

  • Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359

    Article  PubMed Central  PubMed  Google Scholar 

  • Baum CM, Weissman IL, Tsukamoto AS, Buckle AM, Peault B (1992) Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci USA 89:2804–2808

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bocelli-Tyndall C, Zajac P, Di Maggio N, Trella E, Benvenuto F, Iezzi G, Scherberich A, Barbero A, Schaeren S, Pistoia V, Spagnoli G, Vukcevic M, Martin I, Tyndall A (2010) Fibroblast growth factor 2 and platelet-derived growth factor, but not platelet lysate, induce proliferation-dependent, functional class II major histocompatibility complex antigen in human mesenchymal stem cells. Arthritis Rheum 62:3815–3825

    Article  PubMed  CAS  Google Scholar 

  • Caimi PF, Reese J, Lee Z, Lazarus HM (2010) Emerging therapeutic approaches for multipotent mesenchymal stromal cells. Curr Opin Hematol 17:505–513

    Article  PubMed Central  PubMed  Google Scholar 

  • Carvalho PP, Wu X, Yu G, Dietrich M, Dias IR, Gomes ME, Reis RL, Gimble JM (2011) Use of animal protein-free products for passaging adherent human adipose-derived stromal/stem cells. Cytotherapy 13:594–597

    Article  PubMed  CAS  Google Scholar 

  • Chase LG, Lakshmipathy U, Solchaga LA, Rao MS, Vemuri MC (2010) A novel serum-free medium for the expansion of human mesenchymal stem cells. Stem Cell Res Ther 1:8

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chase LG, Yang S, Zachar V, Yang Z, Lakshmipathy U, Bradford J, Boucher SE, Vemuri MC (2012) Development and characterization of a clinically compliant xeno-free culture medium in good manufacturing practice for human multipotent mesenchymal stem cells. Stem Cells Transl Med 1:750–758

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chieregato K, Castegnaro S, Madeo D, Astori G, Pegoraro M, Rodeghiero F (2011) Epidermal growth factor, basic fibroblast growth factor and platelet-derived growth factor-bb can substitute for fetal bovine serum and compete with human platelet-rich plasma in the ex vivo expansion of mesenchymal stromal cells derived from adipose tissue. Cytotherapy 13:933–943

    Article  PubMed  CAS  Google Scholar 

  • Cho YJ, Song HS, Bhang S, Lee S, Kang BG, Lee JC, An J, Cha CI, Nam DH, Kim BS, Joo KM (2012) Therapeutic effects of human adipose stem cell-conditioned medium on stroke. J Neurosci Res 90:1794–1802

    Article  PubMed  CAS  Google Scholar 

  • Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    Article  PubMed  Google Scholar 

  • Ding DC, Shyu WC, Lin SZ (2011) Mesenchymal stem cells. Cell Transplant 20:5–14

    Article  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  • Doucet C, Ernou I, Zhang Y, Llense JR, Begot L, Holy X, Lataillade JJ (2005) Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. J Cell Physiol 205:228–236

    Article  PubMed  CAS  Google Scholar 

  • Fouillard L, Chapel A, Bories D, Bouchet S, Costa JM, Rouard H, Herve P, Gourmelon P, Thierry D, Lopez M, Gorin NC (2007) Infusion of allogeneic-related HLA mismatched mesenchymal stem cells for the treatment of incomplete engraftment following autologous haematopoietic stem cell transplantation. Leukemia 21:568–570

    Article  PubMed  CAS  Google Scholar 

  • Gottipamula S, Sharma A, Krishnamurthy S, Majumdar AS, Seetharam RN (2012) Human platelet lysate is an alternative to fetal bovine serum for large-scale expansion of bone marrow-derived mesenchymal stromal cells. Biotechnol Lett 34:1367–1374

    Article  PubMed  CAS  Google Scholar 

  • Gottipamula S, Muttigi MS, Chaansa S, Ashwin KM, Priya N, Kolkundkar U, Sundar Raj S, Majumdar AS, Seetharam RN (2013) Large-scale expansion of pre-isolated bone marrow mesenchymal stromal cells in serum-free conditions. J Tissue Eng Regen Med. doi:10.1002/term.1713

  • Grisendi G, Anneren C, Cafarelli L, Sternieri R, Veronesi E, Cervo GL, Luminari S, Maur M, Frassoldati A, Palazzi G, Otsuru S, Bambi F, Paolucci P, Pierfranco C, Horwitz E, Dominici M (2010) GMP-manufactured density gradient media for optimized mesenchymal stromal/stem cell isolation and expansion. Cytotherapy 12:466–477

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Chullikana A, Parakh R, Desai S, Das A, Gottipamula S, Krishnamurthy S, Anthony N, Pherwani A, Majumdar AS (2013) A double blind randomized placebo controlled phase I/II study assessing the safety and efficacy of allogeneic bone marrow derived mesenchymal stem cell in critical limb ischemia. J Transl Med 11:143

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A (2005) Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7:393–395

    Article  PubMed  CAS  Google Scholar 

  • Hudson JE, Mills RJ, Frith JE, Brooke G, Jaramillo-Ferrada P, Wolvetang EJ, Cooper-White JJ (2011) A defined medium and substrate for expansion of human mesenchymal stromal cell progenitors that enriches for osteo- and chondrogenic precursors. Stem Cells Dev 20:77–87

    Article  PubMed  CAS  Google Scholar 

  • Jayaraman P, Nathan P, Vasanthan P, Musa S, Govindasamy V (2013) Stem cells conditioned medium: a new approach to skin wound healing management. Cell Biol Int 37:1122–1128

    Google Scholar 

  • Jung S, Sen A, Rosenberg L, Behie LA (2010) Identification of growth and attachment factors for the serum-free isolation and expansion of human mesenchymal stromal cells. Cytotherapy 12:637–657

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Sen A, Rosenberg L, Behie LA (2011) Human mesenchymal stem cell culture: rapid and efficient isolation and expansion in a defined serum-free medium. J Tissue Eng Regen Med 6:391–403

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Panchalingam KM, Rosenberg L, Behie LA (2012) Ex vivo expansion of human mesenchymal stem cells in defined serum-free media. Stem Cells Int 2012:123030

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kobayashi T, Watanabe H, Yanagawa T, Tsutsumi S, Kayakabe M, Shinozaki T, Higuchi H, Takagishi K (2005) Motility and growth of human bone-marrow mesenchymal stem cells during ex vivo expansion in autologous serum. J Bone Joint Surg Br 87:1426–1433

    Article  PubMed  CAS  Google Scholar 

  • Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, Granton J, Stewart DJ (2012) Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS ONE 7:e47559

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Le Blanc K (2003) Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 5:485–489

    Article  PubMed  Google Scholar 

  • Marmont AM, Gualandi F, Piaggio G, Podesta M, Teresa van Lint M, Bacigalupo A, Nobili F (2006) Allogeneic bone marrow transplantation (BMT) for refractory Behcet’s disease with severe CNS involvement. Bone Marrow Transplant 37:1061–1063

    Article  PubMed  CAS  Google Scholar 

  • Martin MJ, Muotri A, Gage F, Varki A (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11:228–232

    Article  PubMed  CAS  Google Scholar 

  • Mimura S, Kimura N, Hirata M, Tateyama D, Hayashida M, Umezawa A, Kohara A, Nikawa H, Okamoto T, Furue MK (2011) Growth factor-defined culture medium for human mesenchymal stem cells. Int J Dev Biol 55:181–187

    Article  PubMed  CAS  Google Scholar 

  • Miwa H, Hashimoto Y, Tensho K, Wakitani S, Takagi M (2012) Xeno-free proliferation of human bone marrow mesenchymal stem cells. Cytotechnology 64:301–308

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nimura A, Muneta T, Koga H, Mochizuki T, Suzuki K, Makino H, Umezawa A, Sekiya I (2008) Increased proliferation of human synovial mesenchymal stem cells with autologous human serum: comparisons with bone marrow mesenchymal stem cells and with fetal bovine serum. Arthritis Rheum 58:501–510

    Article  PubMed  CAS  Google Scholar 

  • Pal R, Hanwate M, Jan M, Totey S (2009) Phenotypic and functional comparison of optimum culture conditions for upscaling of bone marrow-derived mesenchymal stem cells. J Tissue Eng Regen Med 3:163–174

    Article  PubMed  CAS  Google Scholar 

  • Papayannopoulou T (2003) Bone marrow homing: the players, the playfield, and their evolving roles. Curr Opin Hematol 10:214–219

    Article  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  • Prasanna SJ, Gopalakrishnan D, Shankar SR, Vasandan AB (2010) Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS ONE 5:e9016

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Prockop DJ (2009) Repair of tissue by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Mol Ther 6:939–946

    Article  CAS  Google Scholar 

  • Ren G, Su J, Zhang L, Zhao X, Ling W, L’Huillie A, Zhang J, Lu Y, Roberts AI, Ji W, Zhang H, Rabson AB, Shi Y (2009) Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 27:1954–1962

    Article  PubMed  CAS  Google Scholar 

  • Schallmoser K, Bartmann C, Rohde E, Reinisch A, Kashofer K, Stadelmeyer E, Drexler C, Lanzer G, Linkesch W, Strunk D (2007) Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion 47:1436–1446

    Article  PubMed  CAS  Google Scholar 

  • Shahdadfar A, Fronsdal K, Haug T, Reinholt FP, Brinchmann JE (2005) In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells 23:1357–1366

    Article  PubMed  CAS  Google Scholar 

  • Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M (2006) Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells 24:462–471

    Article  PubMed  Google Scholar 

  • Spees JL, Gregory CA, Singh H, Tucker HA, Peister A, Lynch PJ, Hsu SC, Smith J, Prockop DJ (2004) Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Mol Ther 9:747–756

    Article  PubMed  CAS  Google Scholar 

  • Spitkovsky D, Hescheler J (2008) Adult mesenchymal stromal stem cells for therapeutic applications. Minim Invasive Ther Allied Technol 17:79–90

    Article  PubMed  CAS  Google Scholar 

  • Wagner W, Ho AD, Zenke M (2010) Different facets of aging in human mesenchymal stem cells. Tissue Eng Part B 16:445–453

    Article  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was fully funded by Stempeutics Research Pvt. Ltd, Manipal, India. The authors wish to thank Mr. Biju Uthup (BD Biosciences) for providing BD-SFM and Mr. Mithun Chandrashekar for helping in the experimental set-up.

Disclosures

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raviraja N. Seetharam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Cell size distribution analysis of BM-MSC of KO-FBS, BD-SFM and MSX. Viable cell distribution profile by flow cytometry and a cellular image based analyzer. a Average cell sizes analyzed by forward light scattering (FSC height), represented by the peak of each distribution, were compared, b Mean fluorescence intensity. ce Forward and side scatter plot for BM-MSCs grown in KO-FBS, BD-SFM and MSX, respectively. fh The size of BM-MSCs cultured in KO-FBS, BD-SFM and MSX respectively analyzed through Vi cell XR cell analyzer. (JPEG 170 kb)

Fig. S2

Phenotypic marker expression of BM-MSC of KO-FBS, BD-SFM and MSX. The marker profile, commonly referred to as characteristic of human BM-MSCs, was measured by flow cytometry. A total of 10,000 events were acquired using Guava Easycyte (Guava Technologies). Non-specific binding by PE and FITC-conjugated isotope matched control and results were analyzed using Guava software. (JPEG 102 kb)

Fig. S3

a, b Bar diagram of relative surface marker expression of negative markers and positive markers. SD ± SEM (n = 3). (JPEG 63 kb)

Fig. S4

MTT assay of BM-MSC cultured in KO-FBS, BD-SFM and MSX; Significant differences exist between KO-FBS with BD-SFM (n = 3; *p < 0.05) and KO-FBS with MSX (n = 3; *p < 0.05) at 25,000 cells per well. (JPEG 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottipamula, S., Ashwin, K.M., Muttigi, M.S. et al. Isolation, expansion and characterization of bone marrow-derived mesenchymal stromal cells in serum-free conditions. Cell Tissue Res 356, 123–135 (2014). https://doi.org/10.1007/s00441-013-1783-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1783-7

Keywords

Navigation