Skip to main content
Log in

MicroRNA 17–92 cluster regulates proliferation and differentiation of bovine granulosa cells by targeting PTEN and BMPR2 genes

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Granulosa cell proliferation and differentiation are key developmental steps involved in the formation of the dominant follicle eligible for ovulation. This process is, in turn, regulated by spatiotemporally emerging molecular events. MicroRNAs (miRNAs) are one of the molecular signatures believed to regulate granulosa cell function by fine-tuning gene expression. Previously, we showed that the miR-17-92 cluster was differentially expressed in granulosa cells from subordinate and dominant follicles at day 19 of the estrous cycle. However, the role of this miRNA cluster in bovine follicular cell function is not known. Therefore, in the present study, we investigate the role of the miR-17-92 cluster in granulosa cell function by using an in vitro model. Target prediction and luciferase assay analysis revealed that the miR-17-92 cluster coordinately regulated the PTEN and BMPR2 genes. Overexpression of the miR-17-92 cluster by using a mimic promoted granulosa cell proliferation and reduced the proportion of differentiated cells. However, cluster inhibition resulted in decreased proliferation and increased differentiation in granulosa cells. This was further supported by expression analysis of marker genes of proliferation and differentiation. The role of the miR-17-92 cluster was cross-validated by selective knockdown of its target genes by the short interfering RNA technique. Suppression of the PTEN and BMPR2 genes revealed similar phenotypic and molecular alterations as observed when the granulosa cells were transfected with the miR-17-92 cluster mimic. Thus, the miR-17-92 cluster is involved in granulosa cell proliferation and differentiation by coordinately targeting the PTEN and BMPR2 genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aerts JMJ, Bols PEJ (2010) Ovarian follicular dynamics. A review with emphasis on the bovine species. Part II: Antral development, exogenous influence and future prospects. Reprod Domest Anim 45:180–187

    Article  CAS  PubMed  Google Scholar 

  • Alam H, Maizels ET, Park Y, Ghaey S, Feiger ZJ, Chandel NS, Hunzicker-Dunn M (2004) Follicle-stimulating hormone activation of hypoxia-inducible factor-1 by the phosphatidylinositol 3-kinase/AKT/Ras homolog enriched in brain (Rheb)/mammalian target of rapamycin (mTOR) pathway is necessary for induction of select protein markers of follicular differentiation. J Biol Chem 279:19431–19440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao B, Garverick HA, Smith GW, Smith MF, Salfen BE, Youngquist RS (1997) Changes in messenger ribonucleic acid encoding luteinizing hormone receptor, cytochrome P450-side chain cleavage, and aromatase are associated with recruitment and selection of bovine ovarian follicles. Biol Reprod 56:1158–1168

    Article  CAS  PubMed  Google Scholar 

  • Baufeld A, Vanselow J (2013) Increasing cell plating density mimics an early post-LH stage in cultured bovine granulosa cells. Cell Tissue Res 354:869–880

    Article  CAS  PubMed  Google Scholar 

  • Chang HM, Cheng JC, Huang HF, Shi FT, Leung PC (2015) Activin A, B and AB decrease progesterone production by down-regulating StAR in human granulosa cells. Mol Cell Endocrinol 412:290–301

    Article  CAS  PubMed  Google Scholar 

  • Douville G, Sirard MA (2014) Changes in granulosa cells gene expression associated with growth, plateau and atretic phases in medium bovine follicles. J Ovarian Res 7:1757–2215

    Article  Google Scholar 

  • Feng R, Sang Q, Zhu Y, Fu W, Liu M, Xu Y, Shi H, Xu Y, Qu R, Chai R, Shao R, Jin L, He L, Sun X, Wang L (2015) MiRNA-320 in the human follicular fluid is associated with embryo quality in vivo and affects mouse embryonic development in vitro. Sci Rep 5:8689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebremedhn S, Salilew-Wondim D, Ahmad I, Sahadevan S, Hossain MM, Hoelker M, Rings F, Neuhoff C, Tholen E, Looft C, Schellander K, Tesfaye D (2015) MicroRNA expression profile in bovine granulosa cells of preovulatory dominant and subordinate follicles during the late follicular phase of the estrous cycle. PLoS One 10:e0125912

    Article  PubMed  PubMed Central  Google Scholar 

  • Ginther OJ, Knopf L, Kastelic JP (1989) Ovarian follicular dynamics in heifers during early pregnancy. Biol Reprod 41:247–254

    Article  CAS  PubMed  Google Scholar 

  • Girard A, Dufort I, Douville G, Sirard M (2015) Global gene expression in granulosa cells of growing, plateau and atretic dominant follicles in cattle. Reprod Biol Endocrinol 13:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Hatzirodos N, Hummitzsch K, Irving-Rodgers HF, Harland ML, Morris SE, Rodgers RJ (2014a) Transcriptome profiling of granulosa cells from bovine ovarian follicles during atresia. BMC Genomics 15:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Hatzirodos N, Irving-Rodgers HF, Hummitzsch K, Harland ML, Morris SE, Rodgers RJ (2014b) Transcriptome profiling of granulosa cells of bovine ovarian follicles during growth from small to large antral sizes. BMC Genomics 15:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Havelock JC, Rainey WE, Carr BR (2004) Ovarian granulosa cell lines. Mol Cell Endocrinol 228:67–78

    Article  CAS  PubMed  Google Scholar 

  • Hirshfield AN (1991) Development of follicles in the mammalian ovary. Int Rev Cytol 124:43–101

    Article  CAS  PubMed  Google Scholar 

  • Hosoya T, Otsuka F, Nakamura E, Terasaka T, Inagaki K, Tsukamoto-Yamauchi N, Hara T, Toma K, Komatsubara M, Makino H (2015) Regulatory role of BMP-9 in steroidogenesis by rat ovarian granulosa cells. J Steroid Biochem Mol Biol 147:85–91

    Article  CAS  PubMed  Google Scholar 

  • Jagarlamudi K, Liu L, Adhikari D, Reddy P, Idahl A, Ottander U, Lundin E, Liu K (2009) Oocyte-specific deletion of Pten in mice reveals a stage-specific function of PTEN/PI3K signaling in oocytes in controlling follicular activation. PLoS One 4:0006186

    Article  Google Scholar 

  • Jaiswal RS, Singh J, Marshall L, Adams GP (2009) Repeatability of 2-wave and 3-wave patterns of ovarian follicular development during the bovine estrous cycle. Theriogenology 72:81–90

    Article  CAS  PubMed  Google Scholar 

  • Klusza S, Deng WM (2011) At the crossroads of differentiation and proliferation: precise control of cell-cycle changes by multiple signaling pathways in Drosophila follicle cells. Bioessays 33:124–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuran M, Broadbent PJ, Hutchinson JSM (1995) Follicle-stimulating hormone stimulated differentiation and progesterone production of bovine granulosa cells in culture. Anim Reprod Sci 39:237–249

    Article  CAS  Google Scholar 

  • Liu J, Tu F, Yao W, Li X, Xie Z, Liu H, Li Q, Pan Z (2016) Conserved miR-26b enhances ovarian granulosa cell apoptosis through HAS2-HA-CD44-Caspase-3 pathway by targeting HAS2. Sci Rep 6:21197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XS, Chopp M, Wang XL, Zhang L, Hozeska-Solgot A, Tang T, Kassis H, Zhang RL, Chen C, Xu J, Zhang ZG (2013) MicroRNA-17-92 cluster mediates the proliferation and survival of neural progenitor cells after stroke. J Biol Chem 288:12478–12488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Luo W, Zhao X, Jin H, Tao L, Zhu J, Wang H, Hemmings BA, Yang Z (2015) AKT1 signaling coordinates BMP signaling and β-catenin activity to regulate second heart field progenitor development. Development 142:732–742

    Article  CAS  PubMed  Google Scholar 

  • Maalouf SW, Liu WS, Pate JL (2015) MicroRNA in ovarian function. Cell Tissue Res 363:7–18

    Article  PubMed  Google Scholar 

  • McGee EA, Hsueh AJW (2000) Initial and cyclic recruitment of ovarian follicles. Endocr Rev 21:200–214

    CAS  PubMed  Google Scholar 

  • Nivet AL, Vigneault C, Blondin P, Sirard MA (2013) Changes in granulosa cells’ gene expression associated with increased oocyte competence in bovine. Reproduction 145:555–565

    Article  CAS  PubMed  Google Scholar 

  • Rao MC, Midgley AR Jr, Richards JS (1978) Hormonal regulation of ovarian cellular proliferation. Cell 14:71–78

    Article  CAS  PubMed  Google Scholar 

  • Reddy P, Liu L, Adhikari D, Jagarlamudi K, Rajareddy S, Shen Y, Du C, Tang W, Hamalainen T, Peng SL, Lan ZJ, Cooney AJ, Huhtaniemi I, Liu K (2008) Oocyte-specific deletion of PTEN causes premature activation of the primordial follicle pool. Science 319:611–613

    Article  CAS  PubMed  Google Scholar 

  • Richards JS (1994) Hormonal control of gene expression in the ovary. Endocr Rev 15:725–751

    Article  CAS  PubMed  Google Scholar 

  • Richards JS, Hedin L, Caston L (1986) Differentiation of rat ovarian thecal cells: evidence for functional luteinization. Endocrinology 118:1660–1668

    Article  CAS  PubMed  Google Scholar 

  • Richards JS, Fan HY, Liu Z, Tsoi M, Lague MN, Boyer A, Boerboom D (2012) Either Kras activation or Pten loss similarly enhance the dominant-stable CTNNB1-induced genetic program to promote granulosa cell tumor development in the ovary and testis. Oncogene 31:1504–1520

    Article  CAS  PubMed  Google Scholar 

  • Robker RL, Richards JS (1998a) Hormonal control of the cell cycle in ovarian cells: proliferation versus differentiation. Biol Reprod 59:476–482

    Article  CAS  PubMed  Google Scholar 

  • Robker RL, Richards JS (1998b) Hormone-induced proliferation and differentiation of granulosa cells: a coordinated balance of the cell cycle regulators cyclin D2 and p27Kip1. Mol Endocrinol 12:924–940

    Article  CAS  PubMed  Google Scholar 

  • Salilew-Wondim D, Ahmad I, Gebremedhn S, Sahadevan S, Hossain MD, Rings F, Hoelker M, Tholen E, Neuhoff C, Looft C, Schellander K, Tesfaye D (2014) The expression pattern of microRNAs in granulosa cells of subordinate and dominant follicles during the early luteal phase of the bovine estrous cycle. PLoS One 9:e106795

    Article  PubMed  PubMed Central  Google Scholar 

  • Sontakke SD, Mohammed BT, McNeilly AS, Donadeu FX (2014) Characterization of microRNAs differentially expressed during bovine follicle development. Reproduction 148:271–283

    Article  CAS  PubMed  Google Scholar 

  • Voronina E, Lovasco LA, Gyuris A, Baumgartner RA, Parlow AF, Freiman RN (2007) Ovarian granulosa cell survival and proliferation requires the gonad-selective TFIID subunit TAF4b. Dev Biol 303:715–726

    Article  CAS  PubMed  Google Scholar 

  • Xiang C, Li J, Hu L, Huang J, Luo T, Zhong Z, Zheng Y, Zheng L (2015) Hippo signaling pathway reveals a spatio-temporal correlation with the size of primordial follicle pool in mice. Cell Physiol Biochem 35:957–968

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Klausen C, Zhu H, Chang H-M, Leung PCK (2015) BMP4 and BMP7 suppress StAR and progesterone production via ALK3 and SMAD1/5/8-SMAD4 in human granulosa-lutein cells. Endocrinology 156:4269–4280

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Chao H, Sun X, Li L, Shi Q, Shen W (2010) Murine folliculogenesis in vitro is stage-specifically regulated by insulin via the Akt signaling pathway. Histochem Cell Biol 134:75–82

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Ma J, Chen S, Chen X, Yu X (2014) MicroRNA-17-92 cluster regulates osteoblast proliferation and differentiation. Endocrine 45:302–310

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Liu J, Pan Z, Du X, Li X, Ma B, Yao W, Li Q, Liu H (2015) The let-7g microRNA promotes follicular granulosa cell apoptosis by targeting transforming growth factor-β type 1 receptor. Mol Cell Endocrinol 409:103–112

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawit Tesfaye.

Ethics declarations

Funding

This research was financed by the German Research Foundation (DFG) with grant number TE-589/5-1.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 20 kb)

ESM 2

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreas, E., Hoelker, M., Neuhoff, C. et al. MicroRNA 17–92 cluster regulates proliferation and differentiation of bovine granulosa cells by targeting PTEN and BMPR2 genes. Cell Tissue Res 366, 219–230 (2016). https://doi.org/10.1007/s00441-016-2425-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2425-7

Keywords

Navigation