Skip to main content
Erschienen in: Dysphagia 1/2013

01.03.2013 | Review Article

New Directions for Understanding Neural Control in Swallowing: The Potential and Promise of Motor Learning

verfasst von: Ianessa A. Humbert, Rebecca Z. German

Erschienen in: Dysphagia | Ausgabe 1/2013

Einloggen, um Zugang zu erhalten

Abstract

Oropharyngeal swallowing is a complex sensorimotor phenomenon that has had decades of research dedicated to understanding it more thoroughly. However, the underlying neural mechanisms responsible for normal and disordered swallowing remain very vague. We consider this gap in knowledge the result of swallowing research that has been broad (identifying phenomena) but not deep (identifying what controls the phenomena). The goals of this review are to address the complexity of motor control of oropharyngeal swallowing and to review the principles of motor learning based on limb movements as a model system. We compare this literature on limb motor learning to what is known about oropharyngeal function as a first step toward suggesting the use of motor learning principles in swallowing research.
Fußnoten
1
An old tale, common to Jain, Buddhist, Sufi Muslim, and Hindu traditions, tells of three blind men who describe an elephant. The first, feeling the trunk, said that an elephant is like a snake, a muscular rope. The second, feeling an ear, said that an elephant is like a soft piece of cloth and very flexible. The third, feeling a leg, said that an elephant is like a strong pillar, covered in tough material.
 
Literatur
1.
Zurück zum Zitat Marshall-Hall E. On the reflex function of the medulla oblongata and medulla spinalis. Philos Trans. 1833;26:635–65. Marshall-Hall E. On the reflex function of the medulla oblongata and medulla spinalis. Philos Trans. 1833;26:635–65.
2.
Zurück zum Zitat Miller RF, Sherrington CS. Some observations on the bucco-pharyngeal stage of reflex deglutition in the cat. Q J Exp Physiol. 1916;9:147–86. Miller RF, Sherrington CS. Some observations on the bucco-pharyngeal stage of reflex deglutition in the cat. Q J Exp Physiol. 1916;9:147–86.
3.
Zurück zum Zitat Negus VE. The mechanism of swallowing. Proc R Soc Med. 1942;36:85–92.PubMed Negus VE. The mechanism of swallowing. Proc R Soc Med. 1942;36:85–92.PubMed
4.
Zurück zum Zitat Wise S, Shadmehr R. Motor control. In: Ramachandran VS, editor. Encyclopedia of the Human Brain. San Diego: Academic Press; 2002. p. 137–57.CrossRef Wise S, Shadmehr R. Motor control. In: Ramachandran VS, editor. Encyclopedia of the Human Brain. San Diego: Academic Press; 2002. p. 137–57.CrossRef
5.
Zurück zum Zitat Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010;33:89–108.PubMedCrossRef Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010;33:89–108.PubMedCrossRef
6.
Zurück zum Zitat Steele CM, Miller AJ. Sensory input pathways and mechanisms in swallowing: a review. Dysphagia. 2010;25(4):323–33.PubMedCrossRef Steele CM, Miller AJ. Sensory input pathways and mechanisms in swallowing: a review. Dysphagia. 2010;25(4):323–33.PubMedCrossRef
7.
Zurück zum Zitat Humbert IA, Lokhande A, Christopherson H, German R, Stone A. Adaptation of swallowing hyo-laryngeal kinematics is distinct in oral versus pharyngeal sensory processing. J Appl Physiol. 2012;112(10):1698–705.PubMedCrossRef Humbert IA, Lokhande A, Christopherson H, German R, Stone A. Adaptation of swallowing hyo-laryngeal kinematics is distinct in oral versus pharyngeal sensory processing. J Appl Physiol. 2012;112(10):1698–705.PubMedCrossRef
8.
Zurück zum Zitat Kandel R, Schwartz J, Jessell T. Principles of neuroscience. 4th ed. New York: McGraw-Hill; 2002. Kandel R, Schwartz J, Jessell T. Principles of neuroscience. 4th ed. New York: McGraw-Hill; 2002.
9.
Zurück zum Zitat Turvey MT, Fonseca S. Nature of motor control: perspectives and issues. Adv Exp Med Biol. 2009;629:93–123.PubMedCrossRef Turvey MT, Fonseca S. Nature of motor control: perspectives and issues. Adv Exp Med Biol. 2009;629:93–123.PubMedCrossRef
10.
Zurück zum Zitat Turvey M, Shaw R, Mace W. Issues in the theory of action: degrees of freedom, coordinative structures and coalitions. Hillsdale: Lawrence Erlbaum Associates; 1978. Turvey M, Shaw R, Mace W. Issues in the theory of action: degrees of freedom, coordinative structures and coalitions. Hillsdale: Lawrence Erlbaum Associates; 1978.
11.
Zurück zum Zitat Han DS, et al. Comparison of disordered swallowing patterns in patients with recurrent cortical/subcortical stroke and first-time brainstem stroke. J Rehabil Med. 2005;37(3):189–91.PubMed Han DS, et al. Comparison of disordered swallowing patterns in patients with recurrent cortical/subcortical stroke and first-time brainstem stroke. J Rehabil Med. 2005;37(3):189–91.PubMed
12.
Zurück zum Zitat Michou E, Hamdy S. Cortical input in control of swallowing. Curr Opin Otolaryngol Head Neck Surg. 2009;17(3):166–71.PubMedCrossRef Michou E, Hamdy S. Cortical input in control of swallowing. Curr Opin Otolaryngol Head Neck Surg. 2009;17(3):166–71.PubMedCrossRef
13.
Zurück zum Zitat Mosier K, Bereznaya I. Parallel cortical networks for volitional control of swallowing in humans. Exp Brain Res. 2001;140(3):280–9.PubMedCrossRef Mosier K, Bereznaya I. Parallel cortical networks for volitional control of swallowing in humans. Exp Brain Res. 2001;140(3):280–9.PubMedCrossRef
14.
Zurück zum Zitat Suzuki M, Asada Y, Ito J, Hayashi K, Inoue H, Kitano H. Activation of cerebellum and basal ganglia on volitional swallowing detected by functional magnetic resonance imaging. Dysphagia. 2003;18(2):71–7.PubMedCrossRef Suzuki M, Asada Y, Ito J, Hayashi K, Inoue H, Kitano H. Activation of cerebellum and basal ganglia on volitional swallowing detected by functional magnetic resonance imaging. Dysphagia. 2003;18(2):71–7.PubMedCrossRef
15.
Zurück zum Zitat Martin BJ, Logemann JA, Shaker R, Dodds WJ. Normal laryngeal valving patterns during three breath-hold maneuvers: a pilot investigation. Dysphagia. 1993;8(1):11–20.PubMedCrossRef Martin BJ, Logemann JA, Shaker R, Dodds WJ. Normal laryngeal valving patterns during three breath-hold maneuvers: a pilot investigation. Dysphagia. 1993;8(1):11–20.PubMedCrossRef
16.
Zurück zum Zitat Boden K, Hallgren A, Witt Hedstrom H. Effects of three different swallow maneuvers analyzed by videomanometry. Acta Radiol. 2006;47(7):628–33.PubMedCrossRef Boden K, Hallgren A, Witt Hedstrom H. Effects of three different swallow maneuvers analyzed by videomanometry. Acta Radiol. 2006;47(7):628–33.PubMedCrossRef
17.
Zurück zum Zitat Kern MK, Jaradeh S, Arndorfer RC, Shaker R. Cerebral cortical representation of reflexive and volitional swallowing in humans. Am J Physiol Gastrointest Liver Physiol. 2001;280(3):G354–60.PubMed Kern MK, Jaradeh S, Arndorfer RC, Shaker R. Cerebral cortical representation of reflexive and volitional swallowing in humans. Am J Physiol Gastrointest Liver Physiol. 2001;280(3):G354–60.PubMed
18.
Zurück zum Zitat Babaei A, Kern M, Antonik S, Mepani R, Ward BD, Li SJ, Hyde J, Shaker R. Enhancing effects of flavored nutritive stimuli on cortical swallowing network activity. Am J Physiol Gastrointest Liver Physiol. 2010;299(2):G422–9.PubMedCrossRef Babaei A, Kern M, Antonik S, Mepani R, Ward BD, Li SJ, Hyde J, Shaker R. Enhancing effects of flavored nutritive stimuli on cortical swallowing network activity. Am J Physiol Gastrointest Liver Physiol. 2010;299(2):G422–9.PubMedCrossRef
19.
Zurück zum Zitat Humbert IA, Joel S. Tactile, gustatory, and visual biofeed-back stimuli modulate neural substrates of deglutition. Neuroimage. 2012;59(2):1485–90.PubMedCrossRef Humbert IA, Joel S. Tactile, gustatory, and visual biofeed-back stimuli modulate neural substrates of deglutition. Neuroimage. 2012;59(2):1485–90.PubMedCrossRef
20.
Zurück zum Zitat Prochazka A, Clarac F, Loeb GE, Rothwell JC, Wolpaw JR. What do reflex and voluntary mean? Modern views on an ancient debate. Exp Brain Res. 2000;130(4):417–32.PubMedCrossRef Prochazka A, Clarac F, Loeb GE, Rothwell JC, Wolpaw JR. What do reflex and voluntary mean? Modern views on an ancient debate. Exp Brain Res. 2000;130(4):417–32.PubMedCrossRef
21.
22.
Zurück zum Zitat Jean A. Brainstem organization of the swallowing network. Brain Behav Evol. 1984;25(2–3):109–16.PubMedCrossRef Jean A. Brainstem organization of the swallowing network. Brain Behav Evol. 1984;25(2–3):109–16.PubMedCrossRef
23.
Zurück zum Zitat Gibbs CH, Suit SR. Movements of the jaw after unexpected contact with a hard object. J Dent Res. 1973;52(4):810–4.PubMedCrossRef Gibbs CH, Suit SR. Movements of the jaw after unexpected contact with a hard object. J Dent Res. 1973;52(4):810–4.PubMedCrossRef
24.
Zurück zum Zitat Miller AJ. The Neuroscientific principles of swallowing and dysphagia (dysphagia series). San Diego: Singular Publishing Group; 1999. p. 284. Miller AJ. The Neuroscientific principles of swallowing and dysphagia (dysphagia series). San Diego: Singular Publishing Group; 1999. p. 284.
25.
Zurück zum Zitat Miller AJ. The neurobiology of swallowing and dysphagia. Dev Disabil Res Rev. 2008;14(2):77–86.PubMedCrossRef Miller AJ. The neurobiology of swallowing and dysphagia. Dev Disabil Res Rev. 2008;14(2):77–86.PubMedCrossRef
27.
Zurück zum Zitat Humbert IA, Robbins J. Normal swallowing and functional magnetic resonance imaging: a systematic review. Dysphagia. 2007;22(3):266–75.PubMedCrossRef Humbert IA, Robbins J. Normal swallowing and functional magnetic resonance imaging: a systematic review. Dysphagia. 2007;22(3):266–75.PubMedCrossRef
28.
Zurück zum Zitat Ertekin C, Aydogdu I. Neurophysiology of swallowing. Clin Neurophysiol. 2003;114(12):2226–44.PubMedCrossRef Ertekin C, Aydogdu I. Neurophysiology of swallowing. Clin Neurophysiol. 2003;114(12):2226–44.PubMedCrossRef
29.
30.
Zurück zum Zitat Thexton AJ, Crompton AW, German RZ. Electromyographic activity during the reflex pharyngeal swallow in the pig: Doty and Bosma (1956) revisited. J Appl Physiol. 2007;102(2):587–600.PubMedCrossRef Thexton AJ, Crompton AW, German RZ. Electromyographic activity during the reflex pharyngeal swallow in the pig: Doty and Bosma (1956) revisited. J Appl Physiol. 2007;102(2):587–600.PubMedCrossRef
31.
Zurück zum Zitat German RZ, Crompton AW, Thexton AJ. Integration of the reflex pharyngeal swallow into rhythmic oral activity in a neurologically intact pig model. J Neurophysiol. 2009;102(2):1017–25.PubMedCrossRef German RZ, Crompton AW, Thexton AJ. Integration of the reflex pharyngeal swallow into rhythmic oral activity in a neurologically intact pig model. J Neurophysiol. 2009;102(2):1017–25.PubMedCrossRef
32.
Zurück zum Zitat Bastian AJ. Understanding sensorimotor adaptation and learning for rehabilitation. Curr Opin Neurol. 2008;21(6):628–33.PubMedCrossRef Bastian AJ. Understanding sensorimotor adaptation and learning for rehabilitation. Curr Opin Neurol. 2008;21(6):628–33.PubMedCrossRef
33.
Zurück zum Zitat Krakauer JW, Mazzoni P. Human sensorimotor learning: adaptation, skill, and beyond. Curr Opin Neurobiol. 2011;21(4):636–44.PubMedCrossRef Krakauer JW, Mazzoni P. Human sensorimotor learning: adaptation, skill, and beyond. Curr Opin Neurobiol. 2011;21(4):636–44.PubMedCrossRef
34.
Zurück zum Zitat Wolpert DM, Diedrichsen J, Flanagan JR. Principles of sensorimotor learning. Nat Rev Neurosci. 2011;12(12):739–51.PubMed Wolpert DM, Diedrichsen J, Flanagan JR. Principles of sensorimotor learning. Nat Rev Neurosci. 2011;12(12):739–51.PubMed
35.
Zurück zum Zitat Shadmehr R, Krakauer JW. A computational neuroanatomy for motor control. Exp Brain Res. 2008;185(3):359–81.PubMedCrossRef Shadmehr R, Krakauer JW. A computational neuroanatomy for motor control. Exp Brain Res. 2008;185(3):359–81.PubMedCrossRef
36.
Zurück zum Zitat Aasland WA, Baum SR, McFarland DH. Electropalatographic, acoustic, and perceptual data on adaptation to a palatal perturbation. J Acoust Soc Am. 2006;119(4):2372–81.PubMedCrossRef Aasland WA, Baum SR, McFarland DH. Electropalatographic, acoustic, and perceptual data on adaptation to a palatal perturbation. J Acoust Soc Am. 2006;119(4):2372–81.PubMedCrossRef
37.
Zurück zum Zitat Gritsenko V, Kalaska JF. Rapid online correction is selectively suppressed during movement with a visuomotor transformation. J Neurophysiol. 2010;104(6):3084–104.PubMedCrossRef Gritsenko V, Kalaska JF. Rapid online correction is selectively suppressed during movement with a visuomotor transformation. J Neurophysiol. 2010;104(6):3084–104.PubMedCrossRef
38.
Zurück zum Zitat Noguchi K, Fujii H, Yamabe Y, Tanaka M, Shimada A, Torisu T, Suenaga H. Anticipation and motor control on repetitive tooth tapping produced by open–close jaw movements. J Oral Rehabil. 2008;35(1):20–6.PubMedCrossRef Noguchi K, Fujii H, Yamabe Y, Tanaka M, Shimada A, Torisu T, Suenaga H. Anticipation and motor control on repetitive tooth tapping produced by open–close jaw movements. J Oral Rehabil. 2008;35(1):20–6.PubMedCrossRef
39.
Zurück zum Zitat Vasudevan EV, Bastian AJ. Split-belt treadmill adaptation shows different functional networks for fast and slow human walking. J Neurophysiol. 2010;103(1):183–91.PubMedCrossRef Vasudevan EV, Bastian AJ. Split-belt treadmill adaptation shows different functional networks for fast and slow human walking. J Neurophysiol. 2010;103(1):183–91.PubMedCrossRef
40.
Zurück zum Zitat Jayaram G, Galea JM, Bastian AJ, Celnik P. Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cereb Cortex. 2011;21(8):1901–9.PubMedCrossRef Jayaram G, Galea JM, Bastian AJ, Celnik P. Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cereb Cortex. 2011;21(8):1901–9.PubMedCrossRef
41.
Zurück zum Zitat Searl J, Evitts P, Davis WJ. Perceptual and acoustic evidence of speaker adaptation to a thin pseudopalate. Logoped Phoniatr Vocol. 2006;31(3):107–16.PubMedCrossRef Searl J, Evitts P, Davis WJ. Perceptual and acoustic evidence of speaker adaptation to a thin pseudopalate. Logoped Phoniatr Vocol. 2006;31(3):107–16.PubMedCrossRef
42.
Zurück zum Zitat Latash M. Neurophysiological basis of movement. 2nd ed. Champaign: Human Kinetics; 2008. Latash M. Neurophysiological basis of movement. 2nd ed. Champaign: Human Kinetics; 2008.
43.
Zurück zum Zitat Krakauer JW, Shadmehr R. Towards a computational neuropsychology of action. Prog Brain Res. 2007;165:383–94.PubMedCrossRef Krakauer JW, Shadmehr R. Towards a computational neuropsychology of action. Prog Brain Res. 2007;165:383–94.PubMedCrossRef
44.
Zurück zum Zitat Shadmehr R, Mussa-Ivaldi FA. Adaptive representation of dynamics during learning of a motor task. J Neurosci. 1994;14(5 Pt 2):3208–24.PubMed Shadmehr R, Mussa-Ivaldi FA. Adaptive representation of dynamics during learning of a motor task. J Neurosci. 1994;14(5 Pt 2):3208–24.PubMed
45.
Zurück zum Zitat Franklin DW, Wolpert DM. Computational mechanisms of sensorimotor control. Neuron. 2011;72(3):425–42.PubMedCrossRef Franklin DW, Wolpert DM. Computational mechanisms of sensorimotor control. Neuron. 2011;72(3):425–42.PubMedCrossRef
46.
Zurück zum Zitat Shmuelof L, Krakauer JW. Are we ready for a natural history of motor learning? Neuron. 2011;72(3):469–76.PubMedCrossRef Shmuelof L, Krakauer JW. Are we ready for a natural history of motor learning? Neuron. 2011;72(3):469–76.PubMedCrossRef
47.
Zurück zum Zitat Donner MW, Bosma JF, Robertson DL. Anatomy and physiology of the pharynx. Gastrointest Radiol. 1985;10(3):196–212.PubMed Donner MW, Bosma JF, Robertson DL. Anatomy and physiology of the pharynx. Gastrointest Radiol. 1985;10(3):196–212.PubMed
48.
Zurück zum Zitat Smith KK. The evolution of the mammalian pharynx. Zool J Linn Soc. 1992;104:313–49.CrossRef Smith KK. The evolution of the mammalian pharynx. Zool J Linn Soc. 1992;104:313–49.CrossRef
49.
Zurück zum Zitat Ludlow CL. Recent advances in laryngeal sensorimotor control for voice, speech and swallowing. Curr Opin Otolaryngol Head Neck Surg. 2004;12(3):160–5.PubMedCrossRef Ludlow CL. Recent advances in laryngeal sensorimotor control for voice, speech and swallowing. Curr Opin Otolaryngol Head Neck Surg. 2004;12(3):160–5.PubMedCrossRef
50.
Zurück zum Zitat Komuro A, Masuda Y, Iwata K, Kobayashi M, Kato T, Hidaka O, Morimoto T. Influence of food thickness and hardness on possible feed-forward control of the masseteric muscle activity in the anesthetized rabbit. Neurosci Res. 2001;39(1):21–9.PubMedCrossRef Komuro A, Masuda Y, Iwata K, Kobayashi M, Kato T, Hidaka O, Morimoto T. Influence of food thickness and hardness on possible feed-forward control of the masseteric muscle activity in the anesthetized rabbit. Neurosci Res. 2001;39(1):21–9.PubMedCrossRef
51.
Zurück zum Zitat Komuro A, Morimoto T, Iwata K, Inoue T, Masuda Y, Kato T, Hidaka O. Putative feed-forward control of jaw-closing muscle activity during rhythmic jaw movements in the anesthetized rabbit. J Neurophysiol. 2001;86(6):2834–44.PubMed Komuro A, Morimoto T, Iwata K, Inoue T, Masuda Y, Kato T, Hidaka O. Putative feed-forward control of jaw-closing muscle activity during rhythmic jaw movements in the anesthetized rabbit. J Neurophysiol. 2001;86(6):2834–44.PubMed
52.
Zurück zum Zitat Ross CF, Baden AL, Georgi J, Herrel A, Metzger KA, Reed DA, Schaerlaeken V, Wolff MS. Chewing variation in lepidosaurs and primates. J Exp Biol. 2010;213(4):572–84.PubMedCrossRef Ross CF, Baden AL, Georgi J, Herrel A, Metzger KA, Reed DA, Schaerlaeken V, Wolff MS. Chewing variation in lepidosaurs and primates. J Exp Biol. 2010;213(4):572–84.PubMedCrossRef
53.
Zurück zum Zitat Ross CF, Dharia R, Herring SW, Hylander WL, Liu ZJ, Rafferty KL, Ravosa MJ, Williams SH. Modulation of mandibular loading and bite force in mammals during mastication. J Exp Biol. 2007;210:1046–63.PubMedCrossRef Ross CF, Dharia R, Herring SW, Hylander WL, Liu ZJ, Rafferty KL, Ravosa MJ, Williams SH. Modulation of mandibular loading and bite force in mammals during mastication. J Exp Biol. 2007;210:1046–63.PubMedCrossRef
54.
Zurück zum Zitat Hidaka O, Morimoto T, Kato T, Masuda Y, Inoue T, Takada K. Behavior of jaw muscle spindle afferents during cortically induced rhythmic jaw movements in the anesthetized rabbit. J Neurophysiol. 1999;82(5):2633–40.PubMed Hidaka O, Morimoto T, Kato T, Masuda Y, Inoue T, Takada K. Behavior of jaw muscle spindle afferents during cortically induced rhythmic jaw movements in the anesthetized rabbit. J Neurophysiol. 1999;82(5):2633–40.PubMed
55.
Zurück zum Zitat Ottenhoff FA, van der Bilt A, van der Glas HW, Bosman F. Control of human jaw elevator muscle activity during simulated chewing with varying bolus size. Exp Brain Res. 1993;96(3):501–12.PubMedCrossRef Ottenhoff FA, van der Bilt A, van der Glas HW, Bosman F. Control of human jaw elevator muscle activity during simulated chewing with varying bolus size. Exp Brain Res. 1993;96(3):501–12.PubMedCrossRef
56.
Zurück zum Zitat van der Bilt A, Ottenhoff FA, van der Glas HW, Bosman F, Abbink JH. Modulation of the mandibular stretch reflex sensitivity during various phases of rhythmic open–close movements in humans. J Dent Res. 1997;76(4):839–47.PubMedCrossRef van der Bilt A, Ottenhoff FA, van der Glas HW, Bosman F, Abbink JH. Modulation of the mandibular stretch reflex sensitivity during various phases of rhythmic open–close movements in humans. J Dent Res. 1997;76(4):839–47.PubMedCrossRef
58.
Zurück zum Zitat Hidaka O, Iwasaki M, Saito M, Morimoto T. Influence of clenching intensity on bite force balance, occlusal contact area, and average bite pressure. J Dent Res. 1999;78(7):1336–44.PubMedCrossRef Hidaka O, Iwasaki M, Saito M, Morimoto T. Influence of clenching intensity on bite force balance, occlusal contact area, and average bite pressure. J Dent Res. 1999;78(7):1336–44.PubMedCrossRef
59.
Zurück zum Zitat Hidaka O, Morimoto T, Masuda Y, Kato T, Matsuo R, Inoue T, Kobayashi M, Takada K. Regulation of masticatory force during cortically induced rhythmic jaw movements in the anesthetized rabbit. J Neurophysiol. 1997;77(6):3168–79.PubMed Hidaka O, Morimoto T, Masuda Y, Kato T, Matsuo R, Inoue T, Kobayashi M, Takada K. Regulation of masticatory force during cortically induced rhythmic jaw movements in the anesthetized rabbit. J Neurophysiol. 1997;77(6):3168–79.PubMed
60.
Zurück zum Zitat Nasir SM, Ostry DJ. Auditory plasticity and speech motor learning. Proc Natl Acad Sci USA. 2009;106(48):20470–5.PubMedCrossRef Nasir SM, Ostry DJ. Auditory plasticity and speech motor learning. Proc Natl Acad Sci USA. 2009;106(48):20470–5.PubMedCrossRef
61.
Zurück zum Zitat Houde JF, Jordan MI. Sensorimotor adaptation in speech production. Science. 1998;279(5354):1213–6.PubMedCrossRef Houde JF, Jordan MI. Sensorimotor adaptation in speech production. Science. 1998;279(5354):1213–6.PubMedCrossRef
62.
Zurück zum Zitat Houde JF, Jordan MI. Sensorimotor adaptation of speech I: Compensation and adaptation. J Speech Lang Hear Res. 2002;45(2):295–310.PubMedCrossRef Houde JF, Jordan MI. Sensorimotor adaptation of speech I: Compensation and adaptation. J Speech Lang Hear Res. 2002;45(2):295–310.PubMedCrossRef
63.
Zurück zum Zitat Shiller DM, Sato M, Gracco VL, Baum SR. Perceptual recalibration of speech sounds following speech motor learning. J Acoust Soc Am. 2009;125(2):1103–13.PubMedCrossRef Shiller DM, Sato M, Gracco VL, Baum SR. Perceptual recalibration of speech sounds following speech motor learning. J Acoust Soc Am. 2009;125(2):1103–13.PubMedCrossRef
64.
Zurück zum Zitat Nasir SM, Ostry DJ. Speech motor learning in profoundly deaf adults. Nat Neurosci. 2008;11(10):1217–22.PubMedCrossRef Nasir SM, Ostry DJ. Speech motor learning in profoundly deaf adults. Nat Neurosci. 2008;11(10):1217–22.PubMedCrossRef
65.
Zurück zum Zitat Avivi-Arber L, Lee JC, Sessle BJ. Face sensorimotor cortex neuroplasticity associated with intraoral alterations (chap 9). Prog Brain Res. 2011;188:135–50.PubMedCrossRef Avivi-Arber L, Lee JC, Sessle BJ. Face sensorimotor cortex neuroplasticity associated with intraoral alterations (chap 9). Prog Brain Res. 2011;188:135–50.PubMedCrossRef
66.
Zurück zum Zitat Adachi K, Lee JC, Hu JW, Yao D, Sessle BJ. Motor cortex neuroplasticity associated with lingual nerve injury in rats. Somatosens Mot Res. 2007;24(3):97–109.PubMedCrossRef Adachi K, Lee JC, Hu JW, Yao D, Sessle BJ. Motor cortex neuroplasticity associated with lingual nerve injury in rats. Somatosens Mot Res. 2007;24(3):97–109.PubMedCrossRef
67.
Zurück zum Zitat Avivi-Arber L, Lee JC, Sessle BJ. Cortical orofacial motor representation: effect of diet consistency. J Dent Res. 2010;89(10):1142–7.PubMedCrossRef Avivi-Arber L, Lee JC, Sessle BJ. Cortical orofacial motor representation: effect of diet consistency. J Dent Res. 2010;89(10):1142–7.PubMedCrossRef
68.
Zurück zum Zitat Sessle BJ, Hannam AG. Mastication and swallowing: biological and chemical correlates. Toronto: University of Toronto Press; 1976. 194 pp. Sessle BJ, Hannam AG. Mastication and swallowing: biological and chemical correlates. Toronto: University of Toronto Press; 1976. 194 pp.
69.
Zurück zum Zitat German RZ, Crompton AW, Owerkowicz T, Thexton AJ. Volume and rate of milk delivery as determinants of swallowing in an infant model (Sus scrofia). Dysphagia. 2004;19:147–54.PubMed German RZ, Crompton AW, Owerkowicz T, Thexton AJ. Volume and rate of milk delivery as determinants of swallowing in an infant model (Sus scrofia). Dysphagia. 2004;19:147–54.PubMed
70.
Zurück zum Zitat Chee C, Arshad S, Singh S, Mistry S, Hamdy S. The influence of chemical gustatory stimuli and oral anaesthesia on healthy human pharyngeal swallowing. Chem Senses. 2005;30(5):393–400.PubMedCrossRef Chee C, Arshad S, Singh S, Mistry S, Hamdy S. The influence of chemical gustatory stimuli and oral anaesthesia on healthy human pharyngeal swallowing. Chem Senses. 2005;30(5):393–400.PubMedCrossRef
71.
Zurück zum Zitat Ding R, Logemann JA, Larson CR, Rademaker AW. The effects of taste and consistency on swallow physiology in younger and older healthy individuals: a surface electromyographic study. J Speech Lang Hear Res. 2003;46(4):977–89.PubMedCrossRef Ding R, Logemann JA, Larson CR, Rademaker AW. The effects of taste and consistency on swallow physiology in younger and older healthy individuals: a surface electromyographic study. J Speech Lang Hear Res. 2003;46(4):977–89.PubMedCrossRef
72.
Zurück zum Zitat Leow LP, Huckabee ML, Sharma S, Tooley TP. The influence of taste on swallowing apnea, oral preparation time, and duration and amplitude of submental muscle contraction. Chem Senses. 2007;32(2):119–28.PubMedCrossRef Leow LP, Huckabee ML, Sharma S, Tooley TP. The influence of taste on swallowing apnea, oral preparation time, and duration and amplitude of submental muscle contraction. Chem Senses. 2007;32(2):119–28.PubMedCrossRef
73.
Zurück zum Zitat Palmer PM, McCulloch TM, Jaffe D, Neel AT. Effects of a sour bolus on the intramuscular electromyographic (EMG) activity of muscles in the submental region. Dysphagia. 2005;20(3):210–7.PubMedCrossRef Palmer PM, McCulloch TM, Jaffe D, Neel AT. Effects of a sour bolus on the intramuscular electromyographic (EMG) activity of muscles in the submental region. Dysphagia. 2005;20(3):210–7.PubMedCrossRef
74.
Zurück zum Zitat Pelletier CA, Dhanaraj GE. The effect of taste and palatability on lingual swallowing pressure. Dysphagia. 2006;21(2):121–8.PubMedCrossRef Pelletier CA, Dhanaraj GE. The effect of taste and palatability on lingual swallowing pressure. Dysphagia. 2006;21(2):121–8.PubMedCrossRef
75.
Zurück zum Zitat German RZ, Campbell-Malone R, Crompton AW, Ding P, Holman S, Konow N, Thexton AJ. The concept of hyoid posture. Dysphagia. 2011;26(2):97–8.PubMedCrossRef German RZ, Campbell-Malone R, Crompton AW, Ding P, Holman S, Konow N, Thexton AJ. The concept of hyoid posture. Dysphagia. 2011;26(2):97–8.PubMedCrossRef
76.
Zurück zum Zitat Luo P, Zhang J, Yang R, Pendlebury W. Neuronal circuitry and synaptic organization of trigeminal proprioceptive afferents mediating tongue movement and jaw–tongue coordination via hypoglossal premotor neurons. Eur J Neurosci. 2006;23(12):3269–83.PubMedCrossRef Luo P, Zhang J, Yang R, Pendlebury W. Neuronal circuitry and synaptic organization of trigeminal proprioceptive afferents mediating tongue movement and jaw–tongue coordination via hypoglossal premotor neurons. Eur J Neurosci. 2006;23(12):3269–83.PubMedCrossRef
77.
Zurück zum Zitat Krakauer JW, Carmichael ST, Corbett D, Wittenberg GF. Getting neurorehabilitation right: what can be learned from animal models? Neurorehabil Neural Repair. 2012;26(8):923–31.PubMedCrossRef Krakauer JW, Carmichael ST, Corbett D, Wittenberg GF. Getting neurorehabilitation right: what can be learned from animal models? Neurorehabil Neural Repair. 2012;26(8):923–31.PubMedCrossRef
78.
Zurück zum Zitat Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):84–90.PubMedCrossRef Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):84–90.PubMedCrossRef
Metadaten
Titel
New Directions for Understanding Neural Control in Swallowing: The Potential and Promise of Motor Learning
verfasst von
Ianessa A. Humbert
Rebecca Z. German
Publikationsdatum
01.03.2013
Verlag
Springer-Verlag
Erschienen in
Dysphagia / Ausgabe 1/2013
Print ISSN: 0179-051X
Elektronische ISSN: 1432-0460
DOI
https://doi.org/10.1007/s00455-012-9432-y

Weitere Artikel der Ausgabe 1/2013

Dysphagia 1/2013 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.