Skip to main content
Erschienen in: Pediatric Nephrology 10/2009

Open Access 01.10.2009 | Educational Feature

Familial hematuria

verfasst von: Clifford E. Kashtan

Erschienen in: Pediatric Nephrology | Ausgabe 10/2009

Abstract

Hematuria is a common presenting complaint in pediatric nephrology clinics and often has a familial basis. This teaching article provides an overview of causes, diagnosis, and management of the major forms of familial hematuria, Alport syndrome, and thin basement membrane nephropathy.
Hinweise

Answers

1. c
2. a
3. c
4. e
5. d

Introduction

The typical pediatric nephrologist will evaluate hundreds, if not thousands, of children and adolescents with hematuria during the course of her or his career. The major forms of familial hematuria, Alport syndrome and thin basement membrane nephropathy (TBMN), together account for approximately 30–50% of children with isolated glomerular hematuria referred to pediatric nephrology clinics for consultation [14]. The objectives of this teaching article are to (1) assist pediatric nephrologists in recognizing patients who may have familial forms of hematuria, (2) suggest diagnostic approaches that can be used to confirm familial hematuria and make specific diagnoses, and (3) discuss the implications of a diagnosis of familial hematuria for prognosis, reproductive counseling, and treatment.

What is familial hematuria?

For this article, familial hematuria is defined as a group of genetic disorders of glomerular capillaries that are characterized clinically by the onset of persistent hematuria during childhood. Hematuria may be the presenting feature of other heritable diseases, including polycystic kidney disease, hypercalciuria, and other forms of hereditary urolithiasis. This article will focuses on the major forms of familial hematuria: Alport syndrome and TBMN. All patients with Alport syndrome and about 50% of those with TBMN have mutations in type IV collagen, the predominant collagenous constituent of glomerular capillary walls. Minor forms of familial hematuria include Epstein and Fechtner syndromes, which arise from mutations in nonmuscle myosin heavy chain IIA [5]. In these autosomal dominant disorders, hereditary nephritis with ultrastructural features that may be reminiscent of Alport syndrome is associated with sensorineural deafness and macrothrombocytopenia.

Genetics of familial hematurias

A brief review of the genetics of the familial hematurias may be helpful at this point (Table 1). About 80% of those with Alport syndrome have the X-linked form of the disease (XLAS), which is caused by mutations in COL4A5, the gene encoding the α5 chain of type IV collagen [α5(IV)]. Autosomal recessive Alport syndrome (ARAS) accounts for about 15% of affected individuals and arises from mutations in both alleles of COL4A3 or COL4A4, which respectively encode the α3(IV) and α4(IV) chains. The remainder of those with Alport syndrome, about 5%, has autosomal dominant Alport syndrome (ADAS) due to heterozygous mutations in COL4A3 or COL4A4. However, the majority of those with heterozygous mutations of COL4A3 or COL4A4 have a form of familial hematuria that is usually nonprogressive: TBMN.
Table 1
Familial hematurias
 
Locus
Protein
Alport syndrome
X-linked
COL4A5
α5(IV)
Autosomal recessive
COL4A3
α3(IV)
COL4A4
α4(IV)
Autosomal dominant
COL4A3
α3(IV)
COL4A4
α4(IV)
Thin basement membrane nephropathy
Autosomal dominant
COL4A3
α3(IV)
COL4A4
α4(IV)
Epstein/Fechtner syndromes
Autosomal dominant
MYH9
Nonmuscle myosin heavy chain IIA

Clinical features of familial hematurias

Persistent microscopic hematuria is the hallmark of Alport syndrome, occurring in 100% of boys and 95% of girls with XLAS [6] and all boys and girls with ARAS. Typically, red cells number in the tens to dozens, particularly in boys. Red blood cell casts may or may not be observed. Episodic gross hematuria is not unusual. Some affected boys and girls exhibit nearly continuous gross hematuria. The onset of hematuria in affected boys occurs during infancy. On occasion, an affected boy presents with bloodstains in his diaper. About 10–15% of children with XLAS have de novo mutations. Consequently, the great majority of affected children with XLAS have a parent with hematuria. However, normal urinalyses in the parents of a child with hematuria do not exclude a diagnosis of XLAS. XLAS is unlikely if hematuria is found in the father of a boy with hematuria but not his mother.
Each parent of a child with ARAS is a heterozygous carrier of a mutation in COL4A3 or COL4A4. About 50% of these carriers exhibit hematuria. Therefore, hematuria may be found in both, one, or neither parent of a child with ARAS.
As TBMN is, with rare exceptions, a nonprogressive disorder, a family history of dialysis or kidney transplantation in a child with hematuria suggests a diagnosis of Alport syndrome. When assessing the significance of a family history of renal failure, the typical natural history of Alport syndrome and the evolving epidemiology of chronic kidney disease should be considered. For example, renal failure in a young male relative has different implications than renal failure in an older individual with type 2 diabetes. A family history of deafness should also raise suspicion for Alport syndrome, but it should be kept in mind that any individual whose deafness is due to Alport syndrome will also exhibit renal involvement, and the degree of hearing loss tends to parallel the severity of the kidney disease. So, for example, deafness in an otherwise healthy 65-year-old male relative is probably secondary to a process other than Alport syndrome.
Deafness ultimately develops in 80% of males with XLAS [7] and at least that percentage of boys and girls with ARAS. However, detectable hearing loss is often absent when children with Alport syndrome are first evaluated, because the onset of measurable deficits in hearing typically occurs in late childhood. Hearing loss associated with Alport syndrome has several consistent characteristics: it is not present at birth; it is bilateral, with symmetrical onset and severity; it initially involves high-frequency wavelengths; and gradually extends into conversational speech over time. Consideration of these features of the Alport hearing defect can help prevent the clinician from being led down the wrong diagnostic path when presented with a child who has renal disease and deafness.
About 40% of males with XLAS exhibit characteristic ocular anomalies [7]. A distinctive maculopathy consisting of whitish or yellowish flecks distributed around the macula occurs in approximately 20% of XLAS males [7]. These perimacular flecks increase in number with age [8] and are most likely to be observed by an experienced ophthalmologist on dilated exam. Anterior lenticonus, the protrusion of the central area of the lens into the anterior chamber, is pathognomonic of Alport syndrome and occurs in about 20% of affected males with XLAS [7]. Anterior lenticonus is typically discovered during adolescence or young adulthood. A particularly bothersome problem is recurrent corneal erosion, resulting in acute, severe ocular pain [9]. The maculopathy is found in about 15% of females with XLAS; anterior lenticonus is rarely observed [6]. Patients with ARAS can display the same ocular anomalies as those found in XLAS patients [10].
Because TBMN is, according to our current understanding, a renal-limited disorder, the presence of extrarenal abnormalities such as deafness or ocular lesions in someone with hematuria makes a diagnosis of TBMN unlikely. The absence of such findings does not, however, rule out Alport syndrome, especially in the young patient.
In a small number of families, XLAS is associated with smooth-muscle tumors, or leiomyomata, of the esophagus, tracheobronchial tree and, in females, the external genitalia [11]. The Alport syndrome diffuse leiomyomatosis complex is a contiguous gene syndrome resulting from deletions involving the adjacent COL4A5 and COL4A6 genes on the X chromosome [12].

Renal histology in familial hematurias

Alport syndrome and TBMN may be indistinguishable from each other by routine light and immunofluorescence microscopy, and by electron microscopy, in children. Whereas males with Alport syndrome will eventually exhibit light microscopy abnormalities, females may have normal-appearing kidneys by light microscopy, as with individuals with TBMN. In children with familial hematuria, the presence of mesangial proliferation or focal segmental glomerulosclerosis on light microscopy suggests a diagnosis of Alport syndrome.
Since the early 1970s, electron microscopy has been an important technique for diagnosing both TBMN and Alport syndrome and for differentiating the two conditions in patients with hematuria. Individuals with TBMN display diffuse glomerular basement membrane (GBM) thinning associated with attenuation of the lamina densa. The endothelial and epithelial aspects of GBM are smooth and regular, and podocyte foot processes are intact. GBM attenuation is also the earliest glomerular abnormality in patients with Alport syndrome. As a result, TBMN and Alport syndrome may not be distinguishable by electron microscopy in young children.
The pathognomonic ultrastructural lesion of Alport syndrome consists of (1) thickening of the GBM; (2) splitting of the lamina densa into multiple strands that enclose electron-lucent areas, which may contain electron-dense particles; (3) scalloping of the epithelial aspect of the GBM; and (4) partial to complete disappearance of podocyte foot processes in regions of GBM thickening [13]. In males with XLAS, these changes typically first appear during childhood, and the extent of GBM displaying these alterations increases progressively with age [14]. In females, the extent of GBM thickening ranges from focal to diffuse, and the impact of aging on GBM thickening is unpredictable.
Immunostaining of kidney and skin biopsy specimens using monospecific antibodies against type IV collagen chains is a valuable diagnostic modality in patients with hematuria. The utility of this approach derives from the effects of mutations in COL4A3, COL4A4, and COL4A5 genes on expression of α3(IV), α4(IV), and α5(IV) chains in basement membranes. The α3(IV) and α4(IV) chains exist in basement membranes in a single construct: the α3α4α5(IV) heterotrimer. In the normal kidney, the α3α4α5(IV) trimer is present in GBM, Bowman’s capsules, and the basement membranes of distal tubules. Mutations in both alleles of COL4A3 or COL4A4 in ARAS patients frequently result in complete absence of α3α4α5 trimers from renal as well as ocular and cochlear basement membranes [1517]. The α5(IV) chain participates in two trimeric species: the aforementioned α3α4α5(IV) trimer and the α5α5α6 (α52α6) trimer. In the kidney, α52α6 trimers are normally found in Bowman’s capsules, distal and collecting tubule basement membranes, and epidermal basement membranes. Hemizygous COL4A5 mutations in males with XLAS usually lead to elimination of both α3α4α5 and α52α6 trimers from all basement membranes. COL4A3 and COL4A4 mutations do not affect the expression of α52α6 trimers, however.
How can this information be applied to diagnosis of hematuria? In many cases, consideration of type IV collagen immunostaining results can lead to definitive diagnoses:
1.
XLAS: In about 80% of males with XLAS, renal basement membranes exhibit complete absence or, at times, markedly diminished immunostaining for α3, α4, and α5(IV) chains, and epidermal basement membranes are negative for α5(IV) chains [18, 19]. About 60–70% of heterozygous females display mosaic staining of renal basement membranes for α3, α4, and α5(IV) chains and of epidermal basement membranes for α5(IV) chains [20, 21]. Clearly, normal immunostaining results cannot exclude a diagnosis of XLAS.
 
2.
ARAS: In many patients with ARAS, GBM is completely negative for α3, α4, and α5(IV) chains [22]. However, Bowman’s capsules and distal and collecting tubules remain positive for α5(IV), because in those basement membranes, α5(IV) is present in the form of α52α6 trimers. For the same reason, epidermal basement membranes also remain positive for α5(IV).
 
3.
TBMN: Immunostaining for type IV collagen is normal in kidneys and skin of subjects with TBMN. As noted above, normal type IV collagen immunostaining does not exclude Alport syndrome. However, normal type IV collagen immunostaining supports a diagnosis of TBMN in those with hematuria, normal urine protein excretion, negative family history of renal failure, and diffuse GBM thinning. Patients with autosomal dominant Alport syndrome also exhibit normal immunostaining of skin and kidney for type IV collagen chains.
 

Molecular diagnosis of familial hematurias

The COL4A3, COL4A4, and COL4A5 genes have been completely sequenced. Although the genes are large, mutation detection rates in patients with XLAS and ARAS are high [2325]. Access to laboratories offering type IV collagen gene analysis varies from country to country. Molecular approaches may eventually supersede histological methods for diagnosis of familial hematurias but, for now, renal biopsy and skin biopsy are the tools most clinicians rely upon for diagnosing these conditions. Current information regarding molecular testing for Alport Syndrome can be obtained at www.genereviews.org.

Renal transplantation in Alport syndrome

In general, patients with Alport syndrome have good transplant outcomes, with graft survival rates comparable with those of patients with congenital urinary tract anomalies [26]. Transplant preparation and posttransplant care are the same for Alport patients, with two important exceptions: First, planning for transplantation requires special care to insure that affected family members are not inadvertently allowed to serve as kidney donors. Donor selection in Alport families is based on a thorough understanding of disease genetics and is discussed in detail in a recent review [27]. The dilemma most frequently encountered during transplant planning for Alport patients involves the decision about whether to allow a heterozygous female with XLAS to donate a kidney to an affected male relative. Because females with XLAS are at significant risk for developing end-stage renal disease (ESRD) late in life, kidney donation should be discouraged, especially in those younger than 45 years of age [6, 28].
Following transplantation, care providers must maintain a high degree of suspicion for posttransplant anti-GBM nephritis as a cause of allograft dysfunction, especially in the first year [27]. Posttransplant anti-GBM nephritis affects about 3–5% of transplanted Alport males, and usually results in rapid allograft destruction despite aggressive therapy [27]. Surveillance for posttransplant anti-GBM nephritis combines routine measures, such as frequent measurement of serum creatinine and a low threshold for performing an allograft biopsy, with serial monitoring for circulating anti-GBM antibodies by enzyme-linked immunosorbent assay (ELISA). It should be noted that a negative anti-GBM ELISA result does not rule out posttransplant anti-GBM nephritis [29], because the commercial ELISA assays are relatively insensitive to anti-α5(IV) antibodies, which make up the bulk of anti-GBM antibodies in patients with posttransplant anti-GBM nephritis [30].

Management of familial hematurias

Results of studies in transgenic mice and in dogs with Alport syndrome suggest that interference with the generation or action of angiotensin II may slow progression to ESRD [3133]. However, it must be cautioned that the murine studies may be confounded by strain effects [34], and there have been no controlled studies of angiotensin blockade in human Alport subjects [35]. Uncontrolled studies suggested that cyclosporine might have therapeutic benefit in Alport syndrome [36], but enthusiasm has been dampened by a subsequent study indicating that cyclosporine treatment might be associated with accelerated development of interstitial fibrosis [37].
In the absence of data, administration of angiotensin antagonists, such as angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers, alone or in combination, to patients who have developed overt proteinuria is a reasonable approach with relatively little capacity for harm. A recent uncontrolled study reported that addition of an aldosterone inhibitor may augment the effect of angiotensin blockade on proteinuria in children with Alport syndrome [38].
Although patients given a diagnosis of TBMN do not need treatment, they should not be lost to follow-up. A reasonable approach would consist of annual urinalysis and blood pressure measurement. As long as blood pressure and urine protein excretion remain in the normal range, no further evaluation is necessary.

Diagnostic approach

Alport syndrome and TBMN should be in the initial differential diagnosis of all children and adolescents who present with hematuria. Diagnostic criteria for Alport syndrome and TBMN are presented in Table 2.
Table 2
Diagnostic criteria for familial hematurias
Alport syndrome
The presence of two of the following diagnostic criteria establishes the diagnosis of Alport syndrome:
  Family history of hematuria progressing in males to ESRD
   •  About 10–15% of males with XLAS have de novo mutations, so family history may be negative for renal disease. Family history may also be negative in patients with ARAS, although one or both parents may have hematuria
  Characteristic thickening of the glomerular basement membrane and splitting of the lamina densa, detected by electron microscopy of kidney biopsy specimens
   •  Children with Alport syndrome may exhibit only diffuse GBM attenuation, making differentiation from TBMN a challenge
  Progressive, high-frequency sensorineural deafness
    The hearing deficit is frequently detectable by audiometry in later childhood (5–10 years of age) in boys with XLAS and both boys and girls with ARAS
  Anterior lenticonus or perimacular retinal flecks
  •  These changes are pathognomonic of Alport syndrome. Anterior lenticonus is usually not detectable until later adolescence
  Characteristic abnormalities of renal basement membrane expression of type IV collagen α3, α4, and α5 chains (i.e. the α3α4α5 network) by immunostaining of renal biopsy specimens
  •  It is important to note that normal renal basement membrane expression of type IV collagen α3, α4, and α5 chains cannot by itself exclude a diagnosis of Alport syndrome
  •  XLAS: about 80% of XLAS males exhibit complete absence of α3, α4, and α5 chains in renal basement membranes; 60–70% of XLAS females exhibit mosaic staining patterns for these proteins
  •  ARAS: the characteristic pattern is complete absence of α3, α4, and α5 chains in GBM, absence of α3 and α4 chains in Bowman’s capsules and distal tubule basement membranes, but persistence of α5 chains in Bowman’s capsules and distal tubule basement membranes (as a component of α5α5α6 networks)
  •  ADAS: results of immunostaining for α3, α4, and α5 chains are normal
  Characteristic abnormalities of epidermal basement membrane expression of the α5 chain of type IV collagen by immunostaining of skin biopsy specimens
  •  The normal epidermal basement membrane expresses α5α5α6 networks. The α3α4α5 network is not expressed in epidermal basement membranes of normal subjects
  •  It is important to note that normal epidermal basement membrane expression of the α5 chains cannot by itself exclude a diagnosis of Alport syndrome
  •  XLAS: about 80% of XLAS males exhibit complete absence of α5 chains in epidermal basement membrane; 60–70% of XLAS females exhibit mosaic staining patterns for this protein
  •  ARAS and ADAS: results of immunostaining for the α5 chain in epidermal basement membrane are normal
  Mutations in COL4A3, COL4A4, or COL4A5 genes
  •  XLAS: the rate of detection of mutations in COL4A5 in males with XLAS is 80–90% by direct sequencing
  •  ARAS: direct sequencing identifies ∼90% of mutations in COL4A3 or COL4A4 in ARAS patients with consanguineous parents
Thin basement membrane nephropathy
A diagnosis of TBMN can be made on the basis of clinical and pedigree data; renal biopsy may be unnecessary. Criteria for a clinical diagnosis of TBMN include all of the following criteria:
    Isolated hematuria; kidney function, urine protein excretion, and blood pressure are normal
    Positive family history of hematuria, consistent with autosomal dominant transmission
    Negative family history of kidney failure
Renal biopsy may be used to confirm a suspected diagnosis of TBMN. Histological diagnosis is based upon the finding of diffuse attenuation of GBM, as determined by electron microscopy, and the absence of other abnormalities by light microscopy (glomerular cellular proliferation or glomerulosclerosis), immunofluorescence microscopy (glomerular deposition of immunoglobulin or complement), or electron microscopy (lamina densa splitting or fusion of glomerular visceral epithelial cell foot processes). Diffuse GBM attenuation is present when mean GBM width is greater than 2 SD below age- and gender-specific mean values.
Immunostaining of renal biopsy specimens for type IV collagen chains can provide useful adjunctive data. In a patient with diffuse GBM attenuation and who satisfies clinical criteria for TBMN, normal immunostaining for type IV collagen α3, α4, and α5 chains (i.e. the α3α4α5 network) supports a diagnosis of TBMN.
In general, any child whose hematuria does not clearly localize to the lower urinary tract may have familial hematuria. A careful family history aimed at identifying relatives with known hematuria, kidney failure, or deafness is an essential feature of the evaluation of children with hematuria. However, it must be remembered that a negative family history does not exclude Alport syndrome or TBMN. It is also useful to screen all members of the child’s immediate family (parents and siblings) for hematuria, as people with microscopic hematuria may not know they have it.
Does every child with glomerular hematuria need a kidney biopsy, or skin biopsy? The answer is “probably not”. A child with dominantly inherited, isolated glomerular hematuria and a negative family history of kidney failure may be given a tentative diagnosis of TBMN and followed expectantly. In a family with a well-established diagnosis of Alport syndrome, children with hematuria may be presumed to be affected, although it is the author’s practice to obtain a renal ultrasound in every affected child to exclude a structural abnormality of the urinary tract that could affect prognosis.
Skin biopsy with immunostaining for the α5(IV) chain is particularly useful when suspicion of XLAS is high. Examples include a child with hematuria and a positive family history of hematuria and kidney failure, or a child with hematuria and sensorineural deafness. An algorithm incorporating skin biopsy, kidney biopsy and selective use of molecular diagnostic methods is presented in Fig. 1. When XLAS is just one of several possible diagnoses, for example in a child with hematuria and negative family history, a kidney biopsy is more likely to yield a specific diagnosis.
Molecular diagnosis is likely to play a burgeoning role in the diagnostic evaluation of hematuria, although access and expense are still important limitations to this approach. The importance of very early diagnosis may increase if it can be shown that very early pharmacologic intervention can modify the natural history of Alport syndrome. Molecular diagnosis would be ideal for this purpose, although skin and kidney biopsy are also applicable.

Summary

An early and accurate diagnosis in children with familial hematuria provides important information for genetic counseling, allays unnecessary anxiety in those with TBMN, and identifies those who may benefit from intervention. Careful assessment of clinical findings, pedigree data, and results of tissue studies allow accurate diagnosis in the majority of patients. Wider availability of molecular diagnosis would increase diagnostic precision.
Questions (Answers appear following the reference list)
1.
Alport syndrome is a disorder of
a.
type I collagen
 
b.
type II collagen
 
c.
type IV collagen
 
d.
type V collagen
 
e.
type VI collagen
 
 
2.
The percentage of Alport patients who have X-linked disease is about:
a.
80%
 
b.
60%
 
c.
50%
 
d.
30%
 
e.
15%
 
 
3.
The hearing loss of Alport syndrome
a.
is congenital
 
b.
is conductive
 
c.
initially affects high frequency sounds
 
d.
resolves following successful renal transplantation
 
e.
is an uncommon feature of the disease
 
 
4.
The prevalence of hematuria in females with X-linked Alport syndrome is
a.
25%
 
b.
40%
 
c.
60%
 
d.
75%
 
e.
95%
 
 
5.
A small percentage of transplanted Alport patients develop
a.
nephrotic syndrome
 
b.
de novo membranous nephropathy
 
c.
focal segmental glomerulosclerosis
 
d.
anti-GBM nephritis
 
e.
interstitial nephritis
 
 
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Answers

1. c
2. a
3. c
4. e
5. d

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Pädiatrie

Kombi-Abonnement

Mit e.Med Pädiatrie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Pädiatrie, den Premium-Inhalten der pädiatrischen Fachzeitschriften, inklusive einer gedruckten Pädiatrie-Zeitschrift Ihrer Wahl.

e.Med Urologie

Kombi-Abonnement

Mit e.Med Urologie erhalten Sie Zugang zu den urologischen CME-Fortbildungen und Premium-Inhalten der urologischen Fachzeitschriften.

Literatur
1.
Zurück zum Zitat Lang S, Stevenson B, Risdon RA (1990) Thin basement membrane nephropathy as a cause of recurrent hematuria in childhood. Histopathology 16:331–337CrossRef Lang S, Stevenson B, Risdon RA (1990) Thin basement membrane nephropathy as a cause of recurrent hematuria in childhood. Histopathology 16:331–337CrossRef
2.
Zurück zum Zitat Piqueras AI, White RH, Raafat F, Moghal N, Milford DV (1998) Renal biopsy diagnosis in children presenting with hematuria. Pediatr Nephrol 12:386–391CrossRef Piqueras AI, White RH, Raafat F, Moghal N, Milford DV (1998) Renal biopsy diagnosis in children presenting with hematuria. Pediatr Nephrol 12:386–391CrossRef
3.
Zurück zum Zitat Schroder CH, Bontemps CM, Assmann KJ, Schuurmans Stekhoven JH, Foidart JM, Monnens LAH, Veerkamp JH (1990) Renal biopsy and family studies in 65 children with isolated hematuria. Acta Paediatr Scand 79:630–636CrossRef Schroder CH, Bontemps CM, Assmann KJ, Schuurmans Stekhoven JH, Foidart JM, Monnens LAH, Veerkamp JH (1990) Renal biopsy and family studies in 65 children with isolated hematuria. Acta Paediatr Scand 79:630–636CrossRef
4.
Zurück zum Zitat Trachtman H, Weiss R, Bennett B, Greifer I (1984) Isolated hematuria in children: indications for a renal biopsy. Kidney Int 25:94–99CrossRef Trachtman H, Weiss R, Bennett B, Greifer I (1984) Isolated hematuria in children: indications for a renal biopsy. Kidney Int 25:94–99CrossRef
5.
Zurück zum Zitat Seri M, Pecci A, Di Bari F, Cusano R, Savino M, Panza E, Nigro A, Noris P, Gangarossa S, Rocca B, Gresele P, Bizzaro N, Malatesta P, Koivisto PA, Longo I, Musso R, Pecoraro C, Iolascon A, Magrini U, Rodriguez Soriano J, Renieri A, Ghiggeri GM, Ravazzolo R, Balduini CL, Savoia A (2003) MYH9-related disease: May-Hegglin anomaly, Sebastian syndrome, Fechtner syndrome, and Epstein syndrome are not distinct entities but represent a variable expression of a single illness. Medicine (Baltimore) 82:203–215 Seri M, Pecci A, Di Bari F, Cusano R, Savino M, Panza E, Nigro A, Noris P, Gangarossa S, Rocca B, Gresele P, Bizzaro N, Malatesta P, Koivisto PA, Longo I, Musso R, Pecoraro C, Iolascon A, Magrini U, Rodriguez Soriano J, Renieri A, Ghiggeri GM, Ravazzolo R, Balduini CL, Savoia A (2003) MYH9-related disease: May-Hegglin anomaly, Sebastian syndrome, Fechtner syndrome, and Epstein syndrome are not distinct entities but represent a variable expression of a single illness. Medicine (Baltimore) 82:203–215
6.
Zurück zum Zitat Jais JP, Knebelmann B, Giatras I, De Marchi M, Rizzoni G, Renieri A, Weber M, Gross O, Netzer KO, Flinter F, Pirson Y, Dahan K, Wieslander J, Persson U, Tryggvason K, Martin P, Hertz JM, Schroder C, Sanak M, Carvalho MF, Saus J, Antignac C, Smeets H, Gubler MC (2003) X-linked Alport syndrome: natural history and genotype-phenotype correlations in girls and women belonging to to 195 families: a “European Community Alport Syndrome Concerted Action” study. J Am Soc Nephrol 14:2603–2610CrossRef Jais JP, Knebelmann B, Giatras I, De Marchi M, Rizzoni G, Renieri A, Weber M, Gross O, Netzer KO, Flinter F, Pirson Y, Dahan K, Wieslander J, Persson U, Tryggvason K, Martin P, Hertz JM, Schroder C, Sanak M, Carvalho MF, Saus J, Antignac C, Smeets H, Gubler MC (2003) X-linked Alport syndrome: natural history and genotype-phenotype correlations in girls and women belonging to to 195 families: a “European Community Alport Syndrome Concerted Action” study. J Am Soc Nephrol 14:2603–2610CrossRef
7.
Zurück zum Zitat Jais JP, Knebelmann B, Giatras I, De Marchi M, Rizzoni G, Renieri A, Weber M, Gross O, Netzer K-O, Flinter F, Pirson Y, Verellen C, Wieslander J, Persson U, Tryggvason K, Martin P, Hertz JM, Schroder C, Sanak M, Krejcova S, Carvalho MF, Saus J, Antignac C, Smeets H, Gubler MC (2000) X-linked Alport syndrome: natural history in 195 families and genotype-phenotype correlations in males. J Am Soc Nephrol 11:649–657 Jais JP, Knebelmann B, Giatras I, De Marchi M, Rizzoni G, Renieri A, Weber M, Gross O, Netzer K-O, Flinter F, Pirson Y, Verellen C, Wieslander J, Persson U, Tryggvason K, Martin P, Hertz JM, Schroder C, Sanak M, Krejcova S, Carvalho MF, Saus J, Antignac C, Smeets H, Gubler MC (2000) X-linked Alport syndrome: natural history in 195 families and genotype-phenotype correlations in males. J Am Soc Nephrol 11:649–657
8.
Zurück zum Zitat Jacobs M, Jeffrey B, Kriss A, Taylor D, Sa G, Barratt TM (1992) Ophthalmologic assessment of young patients with Alport syndrome. Ophthalmology 99:1039–1044CrossRef Jacobs M, Jeffrey B, Kriss A, Taylor D, Sa G, Barratt TM (1992) Ophthalmologic assessment of young patients with Alport syndrome. Ophthalmology 99:1039–1044CrossRef
9.
Zurück zum Zitat Rhys C, Snyers B, Pirson Y (1997) Recurrent corneal erosion associated with Alport’s syndrome. Kidney Int 52:208–211CrossRef Rhys C, Snyers B, Pirson Y (1997) Recurrent corneal erosion associated with Alport’s syndrome. Kidney Int 52:208–211CrossRef
10.
Zurück zum Zitat Colville D, Savige J, Morfis M, Ellis J, Kerr P, Agar J, Fasset R (1997) Ocular manifestations of autosomal recessive Alport syndrome. Ophthalmic Genet 18:119–128CrossRef Colville D, Savige J, Morfis M, Ellis J, Kerr P, Agar J, Fasset R (1997) Ocular manifestations of autosomal recessive Alport syndrome. Ophthalmic Genet 18:119–128CrossRef
11.
Zurück zum Zitat Antignac C, Heidet L (1996) Mutations in Alport syndrome associated with diffuse esophageal leiomyomatosis. Contrib Nephrol 117:172–182CrossRef Antignac C, Heidet L (1996) Mutations in Alport syndrome associated with diffuse esophageal leiomyomatosis. Contrib Nephrol 117:172–182CrossRef
12.
Zurück zum Zitat Zhou J, Mochizuki T, Smeets H, Antignac C, Laurila P, de Paepe A, Tryggvason K, Reeders ST (1993) Deletion of the paired a5(IV) and a6(IV) collagen genes in inherited smooth muscle tumors. Science 261:1167–1169CrossRef Zhou J, Mochizuki T, Smeets H, Antignac C, Laurila P, de Paepe A, Tryggvason K, Reeders ST (1993) Deletion of the paired a5(IV) and a6(IV) collagen genes in inherited smooth muscle tumors. Science 261:1167–1169CrossRef
13.
Zurück zum Zitat Kashtan CE (2002) Alport syndrome and thin basement membrane disease. Curr Diagnostic Pathol 8:349–360CrossRef Kashtan CE (2002) Alport syndrome and thin basement membrane disease. Curr Diagnostic Pathol 8:349–360CrossRef
14.
Zurück zum Zitat Rumpelt H-J (1980) Hereditary nephropathy (Alport syndrome): correlation of clinical data with glomerular basement membrane alterations. Clin Nephrol 13:203–207 Rumpelt H-J (1980) Hereditary nephropathy (Alport syndrome): correlation of clinical data with glomerular basement membrane alterations. Clin Nephrol 13:203–207
15.
Zurück zum Zitat Kashtan CE, Kim Y (1992) Distribution of the a1 and a2 chains of collagen IV and of collagens V and VI in Alport syndrome. Kidney Int 42:115–126CrossRef Kashtan CE, Kim Y (1992) Distribution of the a1 and a2 chains of collagen IV and of collagens V and VI in Alport syndrome. Kidney Int 42:115–126CrossRef
16.
Zurück zum Zitat Cheong HI, Kashtan CE, Kim Y, Kleppel MM, Michael AF (1994) Immunohistologic studies of type IV collagen in anterior lens capsules of patients with Alport syndrome. Lab Invest 70:553–557PubMed Cheong HI, Kashtan CE, Kim Y, Kleppel MM, Michael AF (1994) Immunohistologic studies of type IV collagen in anterior lens capsules of patients with Alport syndrome. Lab Invest 70:553–557PubMed
17.
Zurück zum Zitat Zehnder AF, Adams JC, Santi PA, Kristiansen AG, Wacharasindhu C, Mann S, Kalluri R, Gregory MC, Kashtan CE, Merchant SN (2005) Distribution of type IV collagen in the cochlea in Alport syndrome. Arch Otolaryngol Head Neck Surg 131:1007–1013CrossRef Zehnder AF, Adams JC, Santi PA, Kristiansen AG, Wacharasindhu C, Mann S, Kalluri R, Gregory MC, Kashtan CE, Merchant SN (2005) Distribution of type IV collagen in the cochlea in Alport syndrome. Arch Otolaryngol Head Neck Surg 131:1007–1013CrossRef
18.
Zurück zum Zitat Nakanishi K, Yoshikawa N, Iijima K, Kitagawa K, Nakamura H, Ito H, Yoshioka K, Kagawa M, Sado Y (1994) Immunohistochemical study of a1-5 chains of type IV collagen in hereditary nephritis. Kidney Int 46:1413–1421CrossRef Nakanishi K, Yoshikawa N, Iijima K, Kitagawa K, Nakamura H, Ito H, Yoshioka K, Kagawa M, Sado Y (1994) Immunohistochemical study of a1-5 chains of type IV collagen in hereditary nephritis. Kidney Int 46:1413–1421CrossRef
19.
Zurück zum Zitat van der Loop FT, Monnens LA, Schroder CH, Lemmink HH, Breuning MH, Timmer ED, Smeets HJ (1999) Identification of COL4A5 defects in Alport syndrome by immunochemistry of skin. Kidney Int 55:1217–1224CrossRef van der Loop FT, Monnens LA, Schroder CH, Lemmink HH, Breuning MH, Timmer ED, Smeets HJ (1999) Identification of COL4A5 defects in Alport syndrome by immunochemistry of skin. Kidney Int 55:1217–1224CrossRef
20.
Zurück zum Zitat Meleg-Smith S, Magliato S, Cheles M, Garola RE, Kashtan CE (1998) X-linked Alport syndrome in females. Hum Pathol 29:404–408CrossRef Meleg-Smith S, Magliato S, Cheles M, Garola RE, Kashtan CE (1998) X-linked Alport syndrome in females. Hum Pathol 29:404–408CrossRef
21.
Zurück zum Zitat Massella L, Onetti Muda A, Faraggiana T, Bette C, Renieri A, Rizzoni G (2003) Epidermal basement membrane alpha 5(IV) expression in females with Alport syndrome and severity of renal disease. Kidney Int 64:1787–1791CrossRef Massella L, Onetti Muda A, Faraggiana T, Bette C, Renieri A, Rizzoni G (2003) Epidermal basement membrane alpha 5(IV) expression in females with Alport syndrome and severity of renal disease. Kidney Int 64:1787–1791CrossRef
22.
Zurück zum Zitat Gubler MC, Knebelmann B, Beziau A, Broyer M, Pirson Y, Haddoum F, Kleppel MM, Antignac C (1995) Autosomal recessive Alport syndrome: immunohistochemical study of type IV collagen chain distribution. Kidney Int 47:1142–1147CrossRef Gubler MC, Knebelmann B, Beziau A, Broyer M, Pirson Y, Haddoum F, Kleppel MM, Antignac C (1995) Autosomal recessive Alport syndrome: immunohistochemical study of type IV collagen chain distribution. Kidney Int 47:1142–1147CrossRef
23.
Zurück zum Zitat Martin P, Heiskari N, Zhou J, Leinonen A, Tumelius T, Hertz JM, Barker D, Gregory M, Atkin C, Sturkarsdottir U, Neumann H, Springate J, Shows T, Pettersson E, Tryggvason K (1998) High mutation detection rate in the COL4A5 collagen gene in suspected Alport syndrome using PCR and direct DNA sequencing. J Am Soc Nephrol 9:2291–2301PubMed Martin P, Heiskari N, Zhou J, Leinonen A, Tumelius T, Hertz JM, Barker D, Gregory M, Atkin C, Sturkarsdottir U, Neumann H, Springate J, Shows T, Pettersson E, Tryggvason K (1998) High mutation detection rate in the COL4A5 collagen gene in suspected Alport syndrome using PCR and direct DNA sequencing. J Am Soc Nephrol 9:2291–2301PubMed
24.
Zurück zum Zitat Boye E, Mollet G, Forestier L, Cohen-Solal L, Heidet L, Cochat P, Grunfeld J-P, Palcoux J-B, Gubler M-C, Antignac C (1998) Determination of the genomic structure of the COL4A4 gene and of novel mutations causing autosomal recessive Alport syndrome. Am J Hum Genet 63:1329–1340CrossRef Boye E, Mollet G, Forestier L, Cohen-Solal L, Heidet L, Cochat P, Grunfeld J-P, Palcoux J-B, Gubler M-C, Antignac C (1998) Determination of the genomic structure of the COL4A4 gene and of novel mutations causing autosomal recessive Alport syndrome. Am J Hum Genet 63:1329–1340CrossRef
25.
Zurück zum Zitat Heidet L, Arrondel C, Forestier L, Cohen-Salal L, Mollet G, Gutierrez B, Stavrou C, Gubler MC, Antignac C (2001) Structure of the human type IV collagen gene COL4A3 and mutations in autosomal Alport syndrome. J Am Soc Nephrol 12:97–106PubMed Heidet L, Arrondel C, Forestier L, Cohen-Salal L, Mollet G, Gutierrez B, Stavrou C, Gubler MC, Antignac C (2001) Structure of the human type IV collagen gene COL4A3 and mutations in autosomal Alport syndrome. J Am Soc Nephrol 12:97–106PubMed
26.
Zurück zum Zitat Kashtan CE, McEnery PT, Tejani A, Stablein DM (1995) Renal allograft survival according to primary diagnosis: a report of the North American Pediatric Renal Transplant Cooperative Study. Pediatr Nephrol 9:679–684CrossRef Kashtan CE, McEnery PT, Tejani A, Stablein DM (1995) Renal allograft survival according to primary diagnosis: a report of the North American Pediatric Renal Transplant Cooperative Study. Pediatr Nephrol 9:679–684CrossRef
27.
Zurück zum Zitat Kashtan CE (2006) Renal transplantation in patients with Alport syndrome. Pediatr Transplant 10:651–657CrossRef Kashtan CE (2006) Renal transplantation in patients with Alport syndrome. Pediatr Transplant 10:651–657CrossRef
28.
Zurück zum Zitat Kashtan CE (2007) Alport syndrome and the X chromosome: implications of a diagnosis of Alport syndrome in females. Nephrol Dial Transplant 22:1499–1505CrossRef Kashtan CE (2007) Alport syndrome and the X chromosome: implications of a diagnosis of Alport syndrome in females. Nephrol Dial Transplant 22:1499–1505CrossRef
29.
Zurück zum Zitat Browne G, Brown PA, Tomson CR, Fleming S, Allen A, Herriot R, Pusey CD, Rees AJ, Turner AN (2004) Retransplantation in Alport post-transplant anti-GBM disease. Kidney Int 65:675–681CrossRef Browne G, Brown PA, Tomson CR, Fleming S, Allen A, Herriot R, Pusey CD, Rees AJ, Turner AN (2004) Retransplantation in Alport post-transplant anti-GBM disease. Kidney Int 65:675–681CrossRef
30.
Zurück zum Zitat Brainwood D, Kashtan C, Gubler MC, Turner AN (1998) Targets of alloantibodies in Alport anti-glomerular basement membrane disease after renal transplantation. Kidney Int 53:762–766CrossRef Brainwood D, Kashtan C, Gubler MC, Turner AN (1998) Targets of alloantibodies in Alport anti-glomerular basement membrane disease after renal transplantation. Kidney Int 53:762–766CrossRef
31.
Zurück zum Zitat Grodecki KM, Gains MJ, Baumal R, Osmond DH, Cotter B, Valli VE, Jacobs RM (1997) Treatment of X-linked hereditary nephritis in Samoyed dogs with angiotensin converting enzyme inhibitor. J Comp Pathol 117:209–225CrossRef Grodecki KM, Gains MJ, Baumal R, Osmond DH, Cotter B, Valli VE, Jacobs RM (1997) Treatment of X-linked hereditary nephritis in Samoyed dogs with angiotensin converting enzyme inhibitor. J Comp Pathol 117:209–225CrossRef
32.
Zurück zum Zitat Gross O, Beirowski B, Koepke ML, Kuck J, Reiner M, Addicks K, Smyth N, Schulze-Lohoff E, Weber M (2003) Preemptive ramipril therapy delays renal failure and reduces renal fibrosis in COL4A3-knockout mice with Alport syndrome. Kidney Int 63:438–446CrossRef Gross O, Beirowski B, Koepke ML, Kuck J, Reiner M, Addicks K, Smyth N, Schulze-Lohoff E, Weber M (2003) Preemptive ramipril therapy delays renal failure and reduces renal fibrosis in COL4A3-knockout mice with Alport syndrome. Kidney Int 63:438–446CrossRef
33.
Zurück zum Zitat Gross O, Koepke ML, Beirowski B, Schulze-Lohoff E, Segerer S, Weber M (2005) Nephroprotection by antifibrotic and anti-inflammatory effects of the vasopeptidase inhibitor AVE7688. Kidney Int 68:456–463CrossRef Gross O, Koepke ML, Beirowski B, Schulze-Lohoff E, Segerer S, Weber M (2005) Nephroprotection by antifibrotic and anti-inflammatory effects of the vasopeptidase inhibitor AVE7688. Kidney Int 68:456–463CrossRef
34.
Zurück zum Zitat Cosgrove D, Kalluri R, Miner JH, Segal Y, Borza DB (2007) Choosing a mouse model to study the molecular pathobiology of Alport glomerulonephritis. Kidney Int 71:615–618CrossRef Cosgrove D, Kalluri R, Miner JH, Segal Y, Borza DB (2007) Choosing a mouse model to study the molecular pathobiology of Alport glomerulonephritis. Kidney Int 71:615–618CrossRef
35.
Zurück zum Zitat Kashtan CE (2005) Familial hematurias: what we know and what we don’t. Pediatr Nephrol 20:1027–1035CrossRef Kashtan CE (2005) Familial hematurias: what we know and what we don’t. Pediatr Nephrol 20:1027–1035CrossRef
36.
Zurück zum Zitat Callis L, Vila A, Carrera M, Nieto J (1999) Long-term effects of cyclosporine A in Alport’s syndrome. Kidney Int 55:1051–1056CrossRef Callis L, Vila A, Carrera M, Nieto J (1999) Long-term effects of cyclosporine A in Alport’s syndrome. Kidney Int 55:1051–1056CrossRef
37.
Zurück zum Zitat Charbit M, Dechaux M, Gagnadoux M, Grunfeld J, Niaudet P (2003) Cyclosporine A therapy in Alport syndrome. Pediatr Nephrol 22:57–63CrossRef Charbit M, Dechaux M, Gagnadoux M, Grunfeld J, Niaudet P (2003) Cyclosporine A therapy in Alport syndrome. Pediatr Nephrol 22:57–63CrossRef
38.
Zurück zum Zitat Kaito H, Nozu K, Iijima K, Nakanishi K, Yoshiya K, Kanda K, Przybyslaw Krol R, Yoshikawa N, Matsuo M (2006) The effect of aldosterone blockade in patients with Alport syndrome. Pediatr Nephrol 21:1824–1829CrossRef Kaito H, Nozu K, Iijima K, Nakanishi K, Yoshiya K, Kanda K, Przybyslaw Krol R, Yoshikawa N, Matsuo M (2006) The effect of aldosterone blockade in patients with Alport syndrome. Pediatr Nephrol 21:1824–1829CrossRef
Metadaten
Titel
Familial hematuria
verfasst von
Clifford E. Kashtan
Publikationsdatum
01.10.2009
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Nephrology / Ausgabe 10/2009
Print ISSN: 0931-041X
Elektronische ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-007-0622-z

Weitere Artikel der Ausgabe 10/2009

Pediatric Nephrology 10/2009 Zur Ausgabe

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.