Skip to main content
Log in

The perceived temperature – a versatile index for the assessment of the human thermal environment. Part A: scientific basics

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The Perceived Temperature (PT) is an equivalent temperature based on a complete heat budget model of the human body. It has proved its suitability for numerous applications across a wide variety of scales from micro to global and is successfully used both in daily forecasts and climatological studies. PT is designed for staying outdoors and is defined as the air temperature of a reference environment in which the thermal perception would be the same as in the actual environment. The calculation is performed for a reference subject with an internal heat production of 135 W m−2 (who is walking at 4 km h−1 on flat ground). In the reference environment, the mean radiant temperature equals the air temperature and wind velocity is reduced to a slight draught. The water vapour pressure remains unchanged. Under warm/humid conditions, however, it is implicitly related to a relative humidity of 50%. Clothing is adapted in order to achieve thermal comfort. If this is impossible, cold or heat stress will occur, respectively. The assessment of thermal perception by means of PT is based on Fanger’s Predicted Mean Vote (PMV) together with additional model extensions taking account of stronger deviations from thermal neutrality. This is performed using a parameterisation based on a two-node model. In the cold, it allows the mean skin temperature to drop below the comfort value. In the heat, it assesses additionally the enthalpy of sweat-moistened skin and of wet clothes. PT has the advantages of being self-explanatory due to its deviation from air temperature and being—via PMV—directly linked to a thermo-physiologically-based scale of thermal perception that is widely used and has stood the test of time. This paper explains in detail the basic equations of the human heat budget and the coefficients of the parameterisations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • ASHRAE (2001) ASHRAE Handbook: Fundamentals, 8. American Society of Heating and Air-Conditioning Engineers, Atlanta, GA

    Google Scholar 

  • Blazejczyk K (1994) New climatological-and-physiological model of the human heat balance outdoor (MENEX) and its applications in bioclimatological studies in different scales. Zeszyty IgiPZ PAN 28:27–58

    Google Scholar 

  • Bruse M (1999) Modelling and strategies for improved urban climates. In: Proceedings of the 15th International Congress of Biometeorology & International Conference on Urban Climatology. Wesley Conference Centre, Sydney, Australia, 8-12 November 1999

  • Büttner K (1938) Physikalische Bioklimatologie. Akademische Verlagsges. Leipzig

  • De Dear RJ, Leow KG, Ameen A (1991) Thermal comfort in the humid tropics – part I: climate chamber experiments on temperature preference in Singapore. ASHRAE Trans 97:874–879

    Google Scholar 

  • De Dear R, Brager GS (2001) The adaptive model of thermal comfort and energy conservation in the built environment. Int J Biometeorol 45:100–108

    Article  Google Scholar 

  • Dostal P, Katzschner A, Bruse M, Huttner B (2009) Quantifying the human thermal-heat-stress in Central European cities with BOTWorld and on site-interviews as analysing tool to estimate the thermal sensation of pedestrians. In: Proceedings of the 7th International Conference on Urban Climate, 29 June – 3 July 2009, Yokohama, Japan, P24-9, http://www.ide.titech.ac.jp/∼icuc7/extended_abstracts/index-web.html

  • Fanger PO (1970) Thermal Comfort. Analysis and Applications in Environmental Engineering. Danish Technical Press, Copenhagen

    Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87:1957–1972

    CAS  Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45:143–159

    Article  CAS  Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (2003) First Principles Modeling of Thermal Sensation Responses in Steady-State and Transient Conditions. ASHRAE Trans 109 (Part 1):179–186

    Google Scholar 

  • Fobelets APR, Gagge AP (1988) Rationalization of the Effective Temperature ET*, as a Measure of the Enthalpy of the Human Indoor Environment. ASHRAE Trans 94/1:12–31

    Google Scholar 

  • Gagge AP, Stolwijk JAJ, Nishi Y (1971) An Effective Temperature Scale Based on a Simple Model of Human Physiological Regulatory Response. ASHRAE Trans 77/1:247–262

    Google Scholar 

  • Gagge AP, Fobelets AP, Berglund PE (1986) A Standard Predictive Index of Human Response to the Thermal Environment. ASHRAE Trans 92:709–731

    Google Scholar 

  • Höppe P (1984) Die Energiebilanz des Menschen. Universität München - Meteorologisches Institut, Wissenschaftliche Mitteilungen Nr, 49

    Google Scholar 

  • Höppe P, Mayer H (1987) Planungsrelevante Bewertung der thermischen Komponente des Stadtklimas. Landschaft + Stadt 19: 22-30

  • Höppe P (1999) The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75

    Article  Google Scholar 

  • Höppe P (2001) Different aspects of assessing indoor and outdoor thermal comfort. In: Proceedings of the Conference “Moving Thermal Comfort Standards into the 21st Century. Cumberland Lodge, Windsor, UK, 5th – 8th April 2001”, pp. 368-375

  • Horikoshi T, Tsuchikawa T, Kurazumi Y, Masubara N (1995) Mathematical Expression of Combined and Separate Effect of Air Temperature, Humidity, Air Velocity and Thermal Radiation on Thermal Comfort. Archiv Complex Environ Stud 7:9–12

    Google Scholar 

  • Huttner S, Bruse M, Dostal P, Kratzschner A (2009) Strategies for mitigating thermal heat stress in Central European cities: The project KLIMES. In: Proceedings of the 7th International Conference on Urban Climate, 29 June - 3 July 2009, Yokohama, Japan, P3-7, http://www.ide.titech.ac.jp/∼icuc7/extended_abstracts/index-web.html

  • Huttner S, Bruse M (2009) Numerical modelling of the urban climate – a preview on ENVI-MET 4.0. In: Proceedings of the 7th International Conference on Urban Climate, 29 June - 3 July 2009, Yokohama, Japan, P3-7, http://www.ide.titech.ac.jp/∼icuc7/extended_abstracts/index-web.html

  • Huizenga C, Hui Z, Arens E (2001) A model of human physiology and comfort for assessing complex thermal environments. Build Environ 36:691–699

    Article  Google Scholar 

  • Hwang R-L, Lin T-P (2007) Thermal comfort requirements for occupants of semi-outdoor and outdoor environments in hot-humid regions. Architect Sci Rev 50:357–364

    Article  Google Scholar 

  • ISO (1989) Hot environments - Estimation of the heat stress on working man, based on the WBGT-index (wet bulb globe temperature). International Standard ISO 7243: 1989 (E), International Organization for Standardization, Geneva

  • ISO (1989) Hot environments – Analytical determination and interpretation of thermal stress using calculation of required sweat rate. International Standard ISO 7933, first edition, International Organization for Standardization, Geneva

  • ISO (1993) Evaluation of cold environments - Determination of required clothing insulation (IREQ). Technical Report ISO TR 11079:1993 (E), first edition. International Organization for Standardization, Geneva

  • ISO (1994) Moderate thermal environments - determination of the PMV and PPD indices and specification of the conditions for thermal comfort. International Standard ISO 7730. International Organization of Standardization, Geneva

  • ISO (2002) Ergonomics - Evaluation of thermal strain by physiological measurements. International Standard ISO 9886, Revision by ISO/TC 159/Sc5 (draft). International Organization of Standardization, Geneva

  • Jendritzky G, Sönning W, Swantes HJ (1979) Ein objektives Bewertungsverfahren zur Beschreibung des thermischen Milieus in der Stadt- und Landesplanung ("Klima-Michel-Modell"). ARL Beiträge Band 28, H. Schröder Verlag KG, Hannover

  • Jendritzky G, Menz G, Schirmer H, Schmidt-Kessen W (1990) Methodik zur raumbezogenen Bewertung der thermischen Komponente im Bioklima des Menschen (Fortgeschriebenes Klima-Michel-Modell). Beiträge d. Akad. f. Raumforschung und Landesplanung Bd. 114, Hannover

  • Jendritzky G, Staiger H, Bucher K, Graetz A, Laschewski G (2000) The Perceived Temperature. The Method of the Deutscher Wetterdienst for the Assessment of Cold Stress and Heat Load for the Human Body. Internet Workshop on Windchill, 03. - 07. April 2000, hosted by the Meteorological Service of Canada

  • Jendritzky G, Bröde P, Fiala D, Havenith G, Weihs P, Batcharova E, DeDear R (2010) The Universal Thermal Climate Index UTCI. In: Matzarakis A, Mayer H, Chmielewski F-M (Ed.) Proceedings of the 7th Conference on Biometeorology, Freiburg, Germany, April 12-14th, 2010. Berichte des Meteorologischen Instituts der Albert-Ludwigs-Universität Freiburg Nr. 20, pp. 184-188

  • Knez I, Thorsson S (2006) Influence of culture and environmental attitude on thermal, emotional and perceptual evaluations of a public square. Int J Biometeorol 50:258–268

    Article  Google Scholar 

  • Landsberg HE (1972) The Assessment of Human Bioclimate, a Limited Review of Physical Parameters. World Meteorological Organization, Technical Note No. 123, WMO-No. 331, Geneva

  • Lin T-P, Matzarakis A (2008) Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int J Biometeorol 52:281–290

    Article  Google Scholar 

  • Lotens WA, Heus R, van de Linde FJG (1989) A 2-node thermoregulatory model for the foot. Proc. of the Int. Symp. on Thermal Physiology, pp. 769-775

  • Matzarakis A, Mayer H (1996) An other kind of environmental stress: thermal stress. WHO News 18:7–10

    Google Scholar 

  • Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43:76–84

    Article  CAS  Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51:323–334

    Article  Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2009) Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol. doi:10.1007/s00484-009-0261-0

    Google Scholar 

  • Morgan C, de Dear R (2003) Weather, clothing and thermal adaptation to indoor climate. Clim Res 24:267–284

    Article  Google Scholar 

  • Nikolopoulou M, Baker N, Steemers K (2001) Thermal comfort in outdoor urban spaces: Understanding the human parameter. Sol Energy 70:227–235

    Article  Google Scholar 

  • Nikopoulou M, Lykoudis S (2006) Thermal comfort in outdoor urban spaces: Analysis across different European countries. Build Environ 41:1455–1470

    Article  Google Scholar 

  • Nikolopoulou M, Lykoudis S (2007) Use of outdoor spaces and microclimate in a Mediterranean urban area. Build Environ 42:3691–3707

    Article  Google Scholar 

  • OFCM (2003) Report on Wind Chill Temperature and Extreme Heat Indices: Evaluation and Improvement Projects. US Department of Commerce, Federal Coordinator for Meteorological Services and Supporting Research, FCM-R19-2003, pp. 75 (http://www.ofcm.gov/jagti/r19-ti-plan/r19-ti-plan.htm)

  • Osczevski RJ (1995) The Basis of Windchill. Arctic 48:372–382

    Google Scholar 

  • Pickup J, de Dear RJ (1999) An Outdoor Thermal Comfort Index (Out-Set*) - Part I - the Model and its Assumptions. In: de Dear RJ, Potter JC (eds) Proceedings of the 15th International Congress of Biometeorology & International Conference on Urban Climatology. Wesley Conference Centre, Sydney 08. - 12. Nov. 1999. Published by Macquarie University, Sydney, Australia, Nov

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1996) Numerical Recipes. Vol. 1, 2nd edn. Cambridge University Press, Cambridge

  • RUROS (2005) Designing Open Spaces in the Urban Environment: a Bioclimatic Approach. http://www.eukn.org/binaries/eukn/dg-research/research/2005/10/ruros_guidelines_en.pdf

  • Sievers U, Zdunkowski WG (1986) A Microscale Urban Climate Model. Beitr Phys Atm 59:13–40

    Google Scholar 

  • Spagnolo J, de Dear R (2003) A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney, Australia. Build Environ 38:721–738

    Article  Google Scholar 

  • Steadman RG (1984) A universal scale of apparent temperature. J Clim Appl Meteorol 23:1674–1687

    Article  Google Scholar 

  • Steadman RG (1994) Norms of apparent temperature in Australia. Aust Meteorol Mag 43:1–16

    Google Scholar 

  • Tanabe SI, Kobayashi K, Nakano J, Ozeki Y, Konishi M (2002) Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energy Build 34:637–646

    Article  Google Scholar 

  • Tseliou A, Tsiros IX, Lykoudis S, Nikolopoulou M (2010) An evaluation of three biometeorological indices for human thermal comfort in urban outdoor areas under real climatic conditions. Build Environ 45:1346–1352

    Article  Google Scholar 

  • VDI (2008): Richtlinie VDI 3787, Part 2 Environmental Meteorology. Methods for the human biometeorological evaluation of climate and air quality for urban and regional planning at regional level. Part I: Climate. VDI-Handbuch Reinhaltung der Luft, Band 1 b

Download references

Acknowledgement

The described parameterisations are based on the two-node model in the version of T. Kinouchi und M. Kanda, Tokyo Institute of Technology from 1998 provided by Prof. Dr A. Matzarakis, Albert-Ludwigs University Freiburg, Germany and in the version of ASHRAE (2001) provided by Prof. Dr R. de Dear, Macquarie University, Sydney, Australia. Thanks go to Dr. M. Nikolopoulou, Bath University, United Kingdom, who grants access to the RUROS database in the framework of the EU-COST-Action 730 on Universal Thermal Climate Index.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gudrun Laschewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staiger, H., Laschewski, G. & Grätz, A. The perceived temperature – a versatile index for the assessment of the human thermal environment. Part A: scientific basics. Int J Biometeorol 56, 165–176 (2012). https://doi.org/10.1007/s00484-011-0409-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-011-0409-6

Keywords

Navigation