Skip to main content
Erschienen in: Journal of Gastroenterology 3/2016

01.03.2016 | Review

Regulation of virulence: the rise and fall of gastrointestinal pathogens

verfasst von: Sho Kitamoto, Hiroko Nagao-Kitamoto, Peter Kuffa, Nobuhiko Kamada

Erschienen in: Journal of Gastroenterology | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

Colonization resistance by the commensal microbiota is a key defense against infectious pathogens in the gastrointestinal tract. The microbiota directly competes with incoming pathogens by occupying the colonization niche, depleting nutrients in the gut lumen as well as indirectly inhibiting the growth of pathogens through activation of host immunity. Enteric pathogens have evolved strategies to cope with microbiota-mediated colonization resistance. Pathogens utilize a wide array of virulence factors to outcompete their commensal rivals in the gut. However, since the expression of virulence factors is costly to maintain and reduces bacterial fitness, pathogens need to regulate their virulence properly in order to maximize their fitness. To this end, most pathogens use environmental cues to regulate their virulence gene expression. Thus, a dynamic regulation of virulence factor expression is a key invasion strategy utilized by enteric pathogens. On the other hand, host immunity selectively targets virulent pathogens in order to counter infection in the gut. The host immune system is generally tolerant of harmless microorganisms, such as the commensal microbiota. Moreover, the host relies on its commensal microbiota to contribute, in concert with its immune system, to the elimination of pathogens. Collectively, regulation of virulence determines the fate of enteric pathogens, from the establishment of infection to the eventual elimination. Here, we will review the dynamics of virulence and its role in infection.
Literatur
1.
Zurück zum Zitat Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65 (Epub 2010/03/06).PubMedCentralCrossRefPubMed Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65 (Epub 2010/03/06).PubMedCentralCrossRefPubMed
2.
Zurück zum Zitat Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr. 2002;22:283–307 (Epub 2002/06/11).CrossRefPubMed Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr. 2002;22:283–307 (Epub 2002/06/11).CrossRefPubMed
3.
Zurück zum Zitat Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337–41 (Epub 2011/01/06).PubMedCentralCrossRefPubMed Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337–41 (Epub 2011/01/06).PubMedCentralCrossRefPubMed
4.
Zurück zum Zitat Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31(4):677–89 (Epub 2009/10/17).CrossRefPubMed Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31(4):677–89 (Epub 2009/10/17).CrossRefPubMed
5.
Zurück zum Zitat Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98 (Epub 2009/10/20).PubMedCentralCrossRefPubMed Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98 (Epub 2009/10/20).PubMedCentralCrossRefPubMed
6.
Zurück zum Zitat Kamada N, Chen GY, Inohara N, et al. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013;14(7):685–90 (Epub 2013/06/20).PubMedCentralCrossRefPubMed Kamada N, Chen GY, Inohara N, et al. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013;14(7):685–90 (Epub 2013/06/20).PubMedCentralCrossRefPubMed
7.
Zurück zum Zitat Kamada N, Seo SU, Chen GY, et al. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13(5):321–35 (Epub 2013/04/27).CrossRefPubMed Kamada N, Seo SU, Chen GY, et al. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13(5):321–35 (Epub 2013/04/27).CrossRefPubMed
8.
Zurück zum Zitat Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol. 2013;13(11):790–801 (Epub 2013/10/08).PubMedCentralCrossRefPubMed Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol. 2013;13(11):790–801 (Epub 2013/10/08).PubMedCentralCrossRefPubMed
9.
Zurück zum Zitat Kamada N, Kim YG, Sham HP, et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science. 2012;336(6086):1325–9 (Epub 2012/05/15).PubMedCentralCrossRefPubMed Kamada N, Kim YG, Sham HP, et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science. 2012;336(6086):1325–9 (Epub 2012/05/15).PubMedCentralCrossRefPubMed
10.
Zurück zum Zitat Fischbach MA, Sonnenburg JL. Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe. 2011;10(4):336–47 (Epub 2011/10/25).PubMedCentralCrossRefPubMed Fischbach MA, Sonnenburg JL. Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe. 2011;10(4):336–47 (Epub 2011/10/25).PubMedCentralCrossRefPubMed
11.
Zurück zum Zitat May T, Mackie RI, Fahey GC Jr, et al. Effect of fiber source on short-chain fatty acid production and on the growth and toxin production by Clostridium difficile. Scand J Gastroenterol. 1994;29(10):916–22 (Epub 1994/10/01).CrossRefPubMed May T, Mackie RI, Fahey GC Jr, et al. Effect of fiber source on short-chain fatty acid production and on the growth and toxin production by Clostridium difficile. Scand J Gastroenterol. 1994;29(10):916–22 (Epub 1994/10/01).CrossRefPubMed
12.
Zurück zum Zitat Van Immerseel F, De Buck J, Pasmans F, et al. Invasion of Salmonella enteritidis in avian intestinal epithelial cells in vitro is influenced by short-chain fatty acids. Int J Food Microbiol. 2003;85(3):237–48 (Epub 2003/07/25).CrossRefPubMed Van Immerseel F, De Buck J, Pasmans F, et al. Invasion of Salmonella enteritidis in avian intestinal epithelial cells in vitro is influenced by short-chain fatty acids. Int J Food Microbiol. 2003;85(3):237–48 (Epub 2003/07/25).CrossRefPubMed
13.
Zurück zum Zitat Lupp C, Robertson ML, Wickham ME, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe. 2007;2(2):119–29 (Epub 2007/11/17).CrossRefPubMed Lupp C, Robertson ML, Wickham ME, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe. 2007;2(2):119–29 (Epub 2007/11/17).CrossRefPubMed
14.
Zurück zum Zitat Sekirov I, Tam NM, Jogova M, et al. Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infect Immun. 2008;76(10):4726–36 (Epub 2008/08/06).PubMedCentralCrossRefPubMed Sekirov I, Tam NM, Jogova M, et al. Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infect Immun. 2008;76(10):4726–36 (Epub 2008/08/06).PubMedCentralCrossRefPubMed
15.
Zurück zum Zitat Bertin Y, Girardeau JP, Chaucheyras-Durand F, et al. Enterohaemorrhagic Escherichia coli gains a competitive advantage by using ethanolamine as a nitrogen source in the bovine intestinal content. Environ Microbiol. 2011;13(2):365–77 (Epub 2010/09/21).CrossRefPubMed Bertin Y, Girardeau JP, Chaucheyras-Durand F, et al. Enterohaemorrhagic Escherichia coli gains a competitive advantage by using ethanolamine as a nitrogen source in the bovine intestinal content. Environ Microbiol. 2011;13(2):365–77 (Epub 2010/09/21).CrossRefPubMed
16.
Zurück zum Zitat Perna NT, Plunkett G 3rd, Burland V, et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature. 2001;409(6819):529–33 (Epub 2001/02/24).CrossRefPubMed Perna NT, Plunkett G 3rd, Burland V, et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature. 2001;409(6819):529–33 (Epub 2001/02/24).CrossRefPubMed
17.
Zurück zum Zitat Winter SE, Thiennimitr P, Winter MG, et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature. 2010;467(7314):426–9 (Epub 2010/09/25).PubMedCentralCrossRefPubMed Winter SE, Thiennimitr P, Winter MG, et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature. 2010;467(7314):426–9 (Epub 2010/09/25).PubMedCentralCrossRefPubMed
18.
Zurück zum Zitat Ferreyra JA, Wu KJ, Hryckowian AJ, et al. Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance. Cell Host Microbe. 2014;16(6):770–7 (Epub 2014/12/17).CrossRefPubMed Ferreyra JA, Wu KJ, Hryckowian AJ, et al. Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance. Cell Host Microbe. 2014;16(6):770–7 (Epub 2014/12/17).CrossRefPubMed
19.
Zurück zum Zitat Sturm A, Heinemann M, Arnoldini M, et al. The cost of virulence: retarded growth of Salmonella Typhimurium cells expressing type III secretion system 1. PLoS Pathog. 2011;7(7):e1002143 (Epub 2011/08/11).PubMedCentralCrossRefPubMed Sturm A, Heinemann M, Arnoldini M, et al. The cost of virulence: retarded growth of Salmonella Typhimurium cells expressing type III secretion system 1. PLoS Pathog. 2011;7(7):e1002143 (Epub 2011/08/11).PubMedCentralCrossRefPubMed
20.
Zurück zum Zitat Kolling G, Wu M, Guerrant RL. Enteric pathogens through life stages. Front Cell Infect Microbiol. 2012;2:114 (Epub 2012/09/01).PubMedCentralPubMed Kolling G, Wu M, Guerrant RL. Enteric pathogens through life stages. Front Cell Infect Microbiol. 2012;2:114 (Epub 2012/09/01).PubMedCentralPubMed
21.
Zurück zum Zitat Castellani F, Ghidini V, Tafi MC, et al. Fate of pathogenic bacteria in microcosms mimicking human body sites. Microb Ecol. 2013;66(1):224–31 (Epub 2013/05/10).CrossRefPubMed Castellani F, Ghidini V, Tafi MC, et al. Fate of pathogenic bacteria in microcosms mimicking human body sites. Microb Ecol. 2013;66(1):224–31 (Epub 2013/05/10).CrossRefPubMed
22.
Zurück zum Zitat Shin S, Castanie-Cornet MP, Foster JW, et al. An activator of glutamate decarboxylase genes regulates the expression of enteropathogenic Escherichia coli virulence genes through control of the plasmid-encoded regulator. Per. Mol Microbiol. 2001;41(5):1133–50 (Epub 2001/09/14).CrossRefPubMed Shin S, Castanie-Cornet MP, Foster JW, et al. An activator of glutamate decarboxylase genes regulates the expression of enteropathogenic Escherichia coli virulence genes through control of the plasmid-encoded regulator. Per. Mol Microbiol. 2001;41(5):1133–50 (Epub 2001/09/14).CrossRefPubMed
23.
Zurück zum Zitat Abe H, Tatsuno I, Tobe T, et al. Bicarbonate ion stimulates the expression of locus of enterocyte effacement-encoded genes in enterohemorrhagic Escherichia coli O157:H7. Infect Immun. 2002;70(7):3500–9 (Epub 2002/06/18).PubMedCentralCrossRefPubMed Abe H, Tatsuno I, Tobe T, et al. Bicarbonate ion stimulates the expression of locus of enterocyte effacement-encoded genes in enterohemorrhagic Escherichia coli O157:H7. Infect Immun. 2002;70(7):3500–9 (Epub 2002/06/18).PubMedCentralCrossRefPubMed
24.
Zurück zum Zitat Caparon MG, Geist RT, Perez-Casal J, et al. Environmental regulation of virulence in group A streptococci: transcription of the gene encoding M protein is stimulated by carbon dioxide. J Bacteriol. 1992;174(17):5693–701 (Epub 1992/09/01).PubMedCentralPubMed Caparon MG, Geist RT, Perez-Casal J, et al. Environmental regulation of virulence in group A streptococci: transcription of the gene encoding M protein is stimulated by carbon dioxide. J Bacteriol. 1992;174(17):5693–701 (Epub 1992/09/01).PubMedCentralPubMed
25.
Zurück zum Zitat Tauschek M, Yang J, Hocking D, et al. Transcriptional analysis of the grlRA virulence operon from Citrobacter rodentium. J Bacteriol. 2010;192(14):3722–34 (Epub 2010/05/18).PubMedCentralCrossRefPubMed Tauschek M, Yang J, Hocking D, et al. Transcriptional analysis of the grlRA virulence operon from Citrobacter rodentium. J Bacteriol. 2010;192(14):3722–34 (Epub 2010/05/18).PubMedCentralCrossRefPubMed
26.
Zurück zum Zitat Yang J, Tauschek M, Hart E, et al. Virulence regulation in Citrobacter rodentium: the art of timing. Microb Biotechnol. 2010;3(3):259–68 (Epub 2011/01/25).PubMedCentralCrossRefPubMed Yang J, Tauschek M, Hart E, et al. Virulence regulation in Citrobacter rodentium: the art of timing. Microb Biotechnol. 2010;3(3):259–68 (Epub 2011/01/25).PubMedCentralCrossRefPubMed
27.
Zurück zum Zitat Tan A, Yang J, Tauschek M, et al. Autogenous transcriptional regulation of the regA gene, encoding an AraC-Like, essential virulence regulator in Citrobacter rodentium. J Bacteriol. 2011;193(7):1777–82 (Epub 2011/02/01).PubMedCentralCrossRefPubMed Tan A, Yang J, Tauschek M, et al. Autogenous transcriptional regulation of the regA gene, encoding an AraC-Like, essential virulence regulator in Citrobacter rodentium. J Bacteriol. 2011;193(7):1777–82 (Epub 2011/02/01).PubMedCentralCrossRefPubMed
28.
Zurück zum Zitat Cummings LA, Wilkerson WD, Bergsbaken T, et al. In vivo, fliC expression by Salmonella enterica serovar Typhimurium is heterogeneous, regulated by ClpX, and anatomically restricted. Mol Microbiol. 2006;61(3):795–809 (Epub 2006/06/29).CrossRefPubMed Cummings LA, Wilkerson WD, Bergsbaken T, et al. In vivo, fliC expression by Salmonella enterica serovar Typhimurium is heterogeneous, regulated by ClpX, and anatomically restricted. Mol Microbiol. 2006;61(3):795–809 (Epub 2006/06/29).CrossRefPubMed
29.
Zurück zum Zitat Cummings LA, Barrett SL, Wilkerson WD, et al. FliC-specific CD4+ T cell responses are restricted by bacterial regulation of antigen expression. J Immunol. 2005;174(12):7929–38 (Epub 2005/06/10).CrossRefPubMed Cummings LA, Barrett SL, Wilkerson WD, et al. FliC-specific CD4+ T cell responses are restricted by bacterial regulation of antigen expression. J Immunol. 2005;174(12):7929–38 (Epub 2005/06/10).CrossRefPubMed
30.
Zurück zum Zitat Winter SE, Winter MG, Godinez I, et al. A rapid change in virulence gene expression during the transition from the intestinal lumen into tissue promotes systemic dissemination of Salmonella. PLoS Pathog. 2010;6(8):e1001060 (Epub 2010/09/03).PubMedCentralCrossRefPubMed Winter SE, Winter MG, Godinez I, et al. A rapid change in virulence gene expression during the transition from the intestinal lumen into tissue promotes systemic dissemination of Salmonella. PLoS Pathog. 2010;6(8):e1001060 (Epub 2010/09/03).PubMedCentralCrossRefPubMed
31.
Zurück zum Zitat Yoshida T, Cai S, Inouye M. Interaction of EnvZ, a sensory histidine kinase, with phosphorylated OmpR, the cognate response regulator. Mol Microbiol. 2002;46(5):1283–94 (Epub 2002/11/28).CrossRefPubMed Yoshida T, Cai S, Inouye M. Interaction of EnvZ, a sensory histidine kinase, with phosphorylated OmpR, the cognate response regulator. Mol Microbiol. 2002;46(5):1283–94 (Epub 2002/11/28).CrossRefPubMed
32.
Zurück zum Zitat Winter SE, Winter MG, Thiennimitr P, et al. The TviA auxiliary protein renders the Salmonella enterica serotype Typhi RcsB regulon responsive to changes in osmolarity. Mol Microbiol. 2009;74(1):175–93 (Epub 2009/08/26).PubMedCentralCrossRefPubMed Winter SE, Winter MG, Thiennimitr P, et al. The TviA auxiliary protein renders the Salmonella enterica serotype Typhi RcsB regulon responsive to changes in osmolarity. Mol Microbiol. 2009;74(1):175–93 (Epub 2009/08/26).PubMedCentralCrossRefPubMed
33.
Zurück zum Zitat Fink RC, Evans MR, Porwollik S, et al. FNR is a global regulator of virulence and anaerobic metabolism in Salmonella enterica serovar Typhimurium (ATCC 14028s). J Bacteriol. 2007;189(6):2262–73 (Epub 2007/01/16).PubMedCentralCrossRefPubMed Fink RC, Evans MR, Porwollik S, et al. FNR is a global regulator of virulence and anaerobic metabolism in Salmonella enterica serovar Typhimurium (ATCC 14028s). J Bacteriol. 2007;189(6):2262–73 (Epub 2007/01/16).PubMedCentralCrossRefPubMed
34.
Zurück zum Zitat Marteyn B, West NP, Browning DF, et al. Modulation of Shigella virulence in response to available oxygen in vivo. Nature. 2010;465(7296):355–8 (Epub 2010/05/04).PubMedCentralCrossRefPubMed Marteyn B, West NP, Browning DF, et al. Modulation of Shigella virulence in response to available oxygen in vivo. Nature. 2010;465(7296):355–8 (Epub 2010/05/04).PubMedCentralCrossRefPubMed
35.
Zurück zum Zitat Gunn JS. Mechanisms of bacterial resistance and response to bile. Microbes Infect. 2000;2(8):907–13 (Epub 2000/08/30).CrossRefPubMed Gunn JS. Mechanisms of bacterial resistance and response to bile. Microbes Infect. 2000;2(8):907–13 (Epub 2000/08/30).CrossRefPubMed
36.
Zurück zum Zitat Chatterjee A, Dutta PK, Chowdhury R. Effect of fatty acids and cholesterol present in bile on expression of virulence factors and motility of Vibrio cholerae. Infect Immun. 2007;75(4):1946–53 (Epub 2007/01/31).PubMedCentralCrossRefPubMed Chatterjee A, Dutta PK, Chowdhury R. Effect of fatty acids and cholesterol present in bile on expression of virulence factors and motility of Vibrio cholerae. Infect Immun. 2007;75(4):1946–53 (Epub 2007/01/31).PubMedCentralCrossRefPubMed
37.
Zurück zum Zitat Lowden MJ, Skorupski K, Pellegrini M, et al. Structure of Vibrio cholerae ToxT reveals a mechanism for fatty acid regulation of virulence genes. Proc Natl Acad Sci USA. 2010;107(7):2860–5 (Epub 2010/02/06).PubMedCentralCrossRefPubMed Lowden MJ, Skorupski K, Pellegrini M, et al. Structure of Vibrio cholerae ToxT reveals a mechanism for fatty acid regulation of virulence genes. Proc Natl Acad Sci USA. 2010;107(7):2860–5 (Epub 2010/02/06).PubMedCentralCrossRefPubMed
38.
Zurück zum Zitat Gupta S, Chowdhury R. Bile affects production of virulence factors and motility of Vibrio cholerae. Infect Immun. 1997;65(3):1131–4 (Epub 1997/03/01).PubMedCentralPubMed Gupta S, Chowdhury R. Bile affects production of virulence factors and motility of Vibrio cholerae. Infect Immun. 1997;65(3):1131–4 (Epub 1997/03/01).PubMedCentralPubMed
39.
Zurück zum Zitat Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81(3):1031–64 (Epub 2001/06/28).PubMed Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81(3):1031–64 (Epub 2001/06/28).PubMed
40.
Zurück zum Zitat Binder HJ. Role of colonic short-chain fatty acid transport in diarrhea. Annu Rev Physiol. 2010;72:297–313 (Epub 2010/02/13).CrossRefPubMed Binder HJ. Role of colonic short-chain fatty acid transport in diarrhea. Annu Rev Physiol. 2010;72:297–313 (Epub 2010/02/13).CrossRefPubMed
41.
Zurück zum Zitat Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc. 2003;62(1):67–72 (Epub 2003/05/13).CrossRefPubMed Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc. 2003;62(1):67–72 (Epub 2003/05/13).CrossRefPubMed
42.
Zurück zum Zitat Lawhon SD, Maurer R, Suyemoto M, et al. Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol Microbiol. 2002;46(5):1451–64 (Epub 2002/11/28).CrossRefPubMed Lawhon SD, Maurer R, Suyemoto M, et al. Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol Microbiol. 2002;46(5):1451–64 (Epub 2002/11/28).CrossRefPubMed
43.
Zurück zum Zitat Robbe C, Capon C, Coddeville B, et al. Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract. Biochem J. 2004;384(Pt 2):307–16 (Epub 2004/09/14).PubMedCentralCrossRefPubMed Robbe C, Capon C, Coddeville B, et al. Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract. Biochem J. 2004;384(Pt 2):307–16 (Epub 2004/09/14).PubMedCentralCrossRefPubMed
44.
Zurück zum Zitat Liquori GE, Mastrodonato M, Mentino D, et al. In situ characterization of O-linked glycans of Muc2 in mouse colon. Acta Histochem. 2012;114(7):723–32 (Epub 2012/01/21).CrossRefPubMed Liquori GE, Mastrodonato M, Mentino D, et al. In situ characterization of O-linked glycans of Muc2 in mouse colon. Acta Histochem. 2012;114(7):723–32 (Epub 2012/01/21).CrossRefPubMed
45.
Zurück zum Zitat Jaswal VM, Babbar HS, Mahmood A. Changes in sialic acid and fucose contents of enterocytes across the crypt-villus axis in developing rat intestine. Biochem Med Metab Biol. 1988;39(1):105–10 (Epub 1988/02/01).CrossRefPubMed Jaswal VM, Babbar HS, Mahmood A. Changes in sialic acid and fucose contents of enterocytes across the crypt-villus axis in developing rat intestine. Biochem Med Metab Biol. 1988;39(1):105–10 (Epub 1988/02/01).CrossRefPubMed
46.
Zurück zum Zitat Chow WL, Lee YK. Free fucose is a danger signal to human intestinal epithelial cells. Br J Nutr. 2008;99(3):449–54 (Epub 2007/08/19).CrossRefPubMed Chow WL, Lee YK. Free fucose is a danger signal to human intestinal epithelial cells. Br J Nutr. 2008;99(3):449–54 (Epub 2007/08/19).CrossRefPubMed
47.
Zurück zum Zitat Pacheco AR, Curtis MM, Ritchie JM, et al. Fucose sensing regulates bacterial intestinal colonization. Nature. 2012;492(7427):113–7 (Epub 2012/11/20).PubMedCentralCrossRefPubMed Pacheco AR, Curtis MM, Ritchie JM, et al. Fucose sensing regulates bacterial intestinal colonization. Nature. 2012;492(7427):113–7 (Epub 2012/11/20).PubMedCentralCrossRefPubMed
48.
Zurück zum Zitat Atarashi K, Tanoue T, Ando M, et al. Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells. Cell. 2015;163(2):367–80 (Epub 2015/09/29).CrossRefPubMed Atarashi K, Tanoue T, Ando M, et al. Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells. Cell. 2015;163(2):367–80 (Epub 2015/09/29).CrossRefPubMed
49.
Zurück zum Zitat Alsharif G, Ahmad S, Islam MS, et al. Host attachment and fluid shear are integrated into a mechanical signal regulating virulence in Escherichia coli O157:H7. Proc Natl Acad Sci USA. 2015;112(17):5503–8 (Epub 2015/04/15).PubMedCentralCrossRefPubMed Alsharif G, Ahmad S, Islam MS, et al. Host attachment and fluid shear are integrated into a mechanical signal regulating virulence in Escherichia coli O157:H7. Proc Natl Acad Sci USA. 2015;112(17):5503–8 (Epub 2015/04/15).PubMedCentralCrossRefPubMed
50.
Zurück zum Zitat Atuma C, Strugala V, Allen A, et al. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol. 2001;280(5):G922–9 (Epub 2001/04/09).PubMed Atuma C, Strugala V, Allen A, et al. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol. 2001;280(5):G922–9 (Epub 2001/04/09).PubMed
51.
Zurück zum Zitat Corazziari ES. Intestinal mucus barrier in normal and inflamed colon. J Pediatr Gastroenterol Nutr. 2009;48(Suppl 2):S54–5 (Epub 2009/03/28).CrossRefPubMed Corazziari ES. Intestinal mucus barrier in normal and inflamed colon. J Pediatr Gastroenterol Nutr. 2009;48(Suppl 2):S54–5 (Epub 2009/03/28).CrossRefPubMed
52.
Zurück zum Zitat Hase CC, Mekalanos JJ. Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA. 1999;96(6):3183–7 (Epub 1999/03/17).PubMedCentralCrossRefPubMed Hase CC, Mekalanos JJ. Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA. 1999;96(6):3183–7 (Epub 1999/03/17).PubMedCentralCrossRefPubMed
53.
Zurück zum Zitat Sifri CD. Healthcare epidemiology: quorum sensing: bacteria talk sense. Clin Infect Dis. 2008;47(8):1070–6 (Epub 2008/09/11).CrossRefPubMed Sifri CD. Healthcare epidemiology: quorum sensing: bacteria talk sense. Clin Infect Dis. 2008;47(8):1070–6 (Epub 2008/09/11).CrossRefPubMed
54.
Zurück zum Zitat Chan WC, Coyle BJ, Williams P. Virulence regulation and quorum sensing in staphylococcal infections: competitive AgrC antagonists as quorum sensing inhibitors. J Med Chem. 2004;47(19):4633–41 (Epub 2004/09/03).CrossRefPubMed Chan WC, Coyle BJ, Williams P. Virulence regulation and quorum sensing in staphylococcal infections: competitive AgrC antagonists as quorum sensing inhibitors. J Med Chem. 2004;47(19):4633–41 (Epub 2004/09/03).CrossRefPubMed
55.
Zurück zum Zitat Cheung AL, Bayer AS, Zhang G, et al. Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunol Med Microbiol. 2004;40(1):1–9 (Epub 2004/01/22).CrossRefPubMed Cheung AL, Bayer AS, Zhang G, et al. Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunol Med Microbiol. 2004;40(1):1–9 (Epub 2004/01/22).CrossRefPubMed
56.
Zurück zum Zitat Wuster A, Babu MM. Conservation and evolutionary dynamics of the agr cell-to-cell communication system across firmicutes. J Bacteriol. 2008;190(2):743–6 (Epub 2007/10/16).PubMedCentralCrossRefPubMed Wuster A, Babu MM. Conservation and evolutionary dynamics of the agr cell-to-cell communication system across firmicutes. J Bacteriol. 2008;190(2):743–6 (Epub 2007/10/16).PubMedCentralCrossRefPubMed
57.
Zurück zum Zitat Diard M, Garcia V, Maier L, et al. Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature. 2013;494(7437):353–6 (Epub 2013/02/22).CrossRefPubMed Diard M, Garcia V, Maier L, et al. Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature. 2013;494(7437):353–6 (Epub 2013/02/22).CrossRefPubMed
58.
Zurück zum Zitat Kamada N, Sakamoto K, Seo SU, et al. Humoral immunity in the gut selectively targets phenotypically virulent attaching-and-effacing bacteria for intraluminal elimination. Cell Host Microbe. 2015;17(5):617–27 (Epub 2015/05/06).CrossRefPubMed Kamada N, Sakamoto K, Seo SU, et al. Humoral immunity in the gut selectively targets phenotypically virulent attaching-and-effacing bacteria for intraluminal elimination. Cell Host Microbe. 2015;17(5):617–27 (Epub 2015/05/06).CrossRefPubMed
59.
Zurück zum Zitat Collins JW, Keeney KM, Crepin VF, et al. Citrobacter rodentium: infection, inflammation and the microbiota. Nat Rev Microbiol. 2014;12(9):612–23 (Epub 2014/08/05).CrossRefPubMed Collins JW, Keeney KM, Crepin VF, et al. Citrobacter rodentium: infection, inflammation and the microbiota. Nat Rev Microbiol. 2014;12(9):612–23 (Epub 2014/08/05).CrossRefPubMed
60.
Zurück zum Zitat Bry L, Brenner MB. Critical role of T cell-dependent serum antibody, but not the gut-associated lymphoid tissue, for surviving acute mucosal infection with Citrobacter rodentium, an attaching and effacing pathogen. J Immunol. 2004;172(1):433–41 (Epub 2003/12/23).CrossRefPubMed Bry L, Brenner MB. Critical role of T cell-dependent serum antibody, but not the gut-associated lymphoid tissue, for surviving acute mucosal infection with Citrobacter rodentium, an attaching and effacing pathogen. J Immunol. 2004;172(1):433–41 (Epub 2003/12/23).CrossRefPubMed
61.
Zurück zum Zitat Maaser C, Housley MP, Iimura M, et al. Clearance of Citrobacter rodentium requires B cells but not secretory immunoglobulin A (IgA) or IgM antibodies. Infect Immun. 2004;72(6):3315–24 (Epub 2004/05/25).PubMedCentralCrossRefPubMed Maaser C, Housley MP, Iimura M, et al. Clearance of Citrobacter rodentium requires B cells but not secretory immunoglobulin A (IgA) or IgM antibodies. Infect Immun. 2004;72(6):3315–24 (Epub 2004/05/25).PubMedCentralCrossRefPubMed
62.
Zurück zum Zitat Palm NW, de Zoete MR, Cullen TW, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014;158(5):1000–10 (Epub 2014/08/30).PubMedCentralCrossRefPubMed Palm NW, de Zoete MR, Cullen TW, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014;158(5):1000–10 (Epub 2014/08/30).PubMedCentralCrossRefPubMed
Metadaten
Titel
Regulation of virulence: the rise and fall of gastrointestinal pathogens
verfasst von
Sho Kitamoto
Hiroko Nagao-Kitamoto
Peter Kuffa
Nobuhiko Kamada
Publikationsdatum
01.03.2016
Verlag
Springer Japan
Erschienen in
Journal of Gastroenterology / Ausgabe 3/2016
Print ISSN: 0944-1174
Elektronische ISSN: 1435-5922
DOI
https://doi.org/10.1007/s00535-015-1141-5

Weitere Artikel der Ausgabe 3/2016

Journal of Gastroenterology 3/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.