Skip to main content
Erschienen in: Journal of Gastroenterology 12/2016

29.03.2016 | Original Article—Liver, Pancreas, and Biliary Tract

Ipragliflozin, a sodium–glucose cotransporter 2 inhibitor, ameliorates the development of liver fibrosis in diabetic Otsuka Long–Evans Tokushima fatty rats

verfasst von: Norihisa Nishimura, Mitsuteru Kitade, Ryuichi Noguchi, Tadashi Namisaki, Kei Moriya, Kosuke Takeda, Yasushi Okura, Yosuke Aihara, Akitoshi Douhara, Hideto Kawaratani, Kiyoshi Asada, Hitoshi Yoshiji

Erschienen in: Journal of Gastroenterology | Ausgabe 12/2016

Einloggen, um Zugang zu erhalten

Abstract

Background

It is widely understood that insulin resistance (IR) critically correlates with the development of liver fibrosis in several types of chronic liver injuries. Several experiments have proved that anti-IR treatment can alleviate liver fibrosis. Sodium–glucose cotransporter 2 (SGLT2) inhibitors comprise a new class of antidiabetic agents that inhibit glucose reabsorption in the renal proximal tubules, improving IR. The aim of this study was to elucidate the effect of an SGLT2 inhibitor on the development of liver fibrosis using obese diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats and their littermate nondiabetic Long–Evans Tokushima Otsuka (LETO) rats.

Methods

Male OLETF and LETO rats were intraperitoneally injected with porcine serum twice a week for 12 weeks to augment liver fibrogenesis. Different concentrations of ipragliflozin (3 and 6 mg/kg) were orally administered during the experimental period. Serological and histological data were examined at the end of the experimental period. The direct effect of ipragliflozin on the proliferation of a human hepatic stellate cell (HSC) line, LX-2, was also evaluated in vitro.

Results

OLETF rats, but not LETO rats, received 12 weeks of porcine serum injection to induce severe fibrosis. Treatment with ipragliflozin markedly attenuated the development of liver fibrosis and expression of hepatic fibrosis markers, such as alpha smooth muscle actin, collagen 1A1, and transforming growth factor beta (TGF-β), and improved IR in a dose-dependent manner in OLETF rats. In contrast, the proliferation of LX-2 in vitro was not affected, suggesting that ipragliflozin had no significant direct effect on the proliferation of HSCs.

Conclusion

In conclusion, our dataset suggests that an SGLT2 inhibitor could alleviate the development of liver fibrosis by improving IR in naturally diabetic rats. This may provide the basis for creating new therapeutic strategies for chronic liver injuries with IR.
Literatur
1.
3.
Zurück zum Zitat Iwaisako K, Taura K, Koyama Y, et al. Strategies to detect hepatic myofibroblasts in liver cirrhosis of different etiologies. Curr Pathobiol Rep. 2014;2(4):209–15.CrossRefPubMedPubMedCentral Iwaisako K, Taura K, Koyama Y, et al. Strategies to detect hepatic myofibroblasts in liver cirrhosis of different etiologies. Curr Pathobiol Rep. 2014;2(4):209–15.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Tolman KG, Fonseca V, Dalpiaz A, et al. Spectrum of liver disease in type 2 diabetes and management of patients with diabetes and liver disease. Diabetes Care. 2007;30(3):734–43.CrossRefPubMed Tolman KG, Fonseca V, Dalpiaz A, et al. Spectrum of liver disease in type 2 diabetes and management of patients with diabetes and liver disease. Diabetes Care. 2007;30(3):734–43.CrossRefPubMed
6.
Zurück zum Zitat Bugianesi E, McCullough AJ, Marchesini G. Insulin resistance: a metabolic pathway to chronic liver disease. Hepatology. 2005;42(5):987–1000.CrossRefPubMed Bugianesi E, McCullough AJ, Marchesini G. Insulin resistance: a metabolic pathway to chronic liver disease. Hepatology. 2005;42(5):987–1000.CrossRefPubMed
7.
Zurück zum Zitat Kahn CR. Insulin resistance, insulin insensitivity, and insulin unresponsiveness: a necessary distinction. Metabolism. 1978;27(12 Suppl 2):1893–902.CrossRefPubMed Kahn CR. Insulin resistance, insulin insensitivity, and insulin unresponsiveness: a necessary distinction. Metabolism. 1978;27(12 Suppl 2):1893–902.CrossRefPubMed
8.
Zurück zum Zitat Gastaldelli A, Cusi K, Pettiti M, et al. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology. 2007;133(2):496–506.CrossRefPubMed Gastaldelli A, Cusi K, Pettiti M, et al. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology. 2007;133(2):496–506.CrossRefPubMed
9.
Zurück zum Zitat Mason AL, Lau JY, Hoang N, et al. Association of diabetes mellitus and chronic hepatitis C virus infection. Hepatology. 1999;29(2):328–33.CrossRefPubMed Mason AL, Lau JY, Hoang N, et al. Association of diabetes mellitus and chronic hepatitis C virus infection. Hepatology. 1999;29(2):328–33.CrossRefPubMed
10.
Zurück zum Zitat Shintani Y, Fujie H, Miyoshi H, et al. Hepatitis C virus infection and diabetes: direct involvement of the virus in the development of insulin resistance. Gastroenterology. 2004;126(3):840–8.CrossRefPubMed Shintani Y, Fujie H, Miyoshi H, et al. Hepatitis C virus infection and diabetes: direct involvement of the virus in the development of insulin resistance. Gastroenterology. 2004;126(3):840–8.CrossRefPubMed
11.
Zurück zum Zitat Allison ME, Wreghitt T, Palmer CR, et al. Evidence for a link between hepatitis C virus infection and diabetes mellitus in a cirrhotic population. J Hepatol. 1994;21(6):1135–9.CrossRefPubMed Allison ME, Wreghitt T, Palmer CR, et al. Evidence for a link between hepatitis C virus infection and diabetes mellitus in a cirrhotic population. J Hepatol. 1994;21(6):1135–9.CrossRefPubMed
12.
Zurück zum Zitat Chitturi S, Abeygunasekera S, Farrell GC, et al. NASH and insulin resistance: insulin hypersecretion and specific association with the insulin resistance syndrome. Hepatology. 2002;35(2):373–9.CrossRefPubMed Chitturi S, Abeygunasekera S, Farrell GC, et al. NASH and insulin resistance: insulin hypersecretion and specific association with the insulin resistance syndrome. Hepatology. 2002;35(2):373–9.CrossRefPubMed
13.
Zurück zum Zitat Sugimoto R, Enjoji M, Kohjima M, et al. High glucose stimulates hepatic stellate cells to proliferate and to produce collagen through free radical production and activation ofmitogen-activated protein kinase. Liver Int. 2005;25(5):1018–26.CrossRefPubMed Sugimoto R, Enjoji M, Kohjima M, et al. High glucose stimulates hepatic stellate cells to proliferate and to produce collagen through free radical production and activation ofmitogen-activated protein kinase. Liver Int. 2005;25(5):1018–26.CrossRefPubMed
14.
Zurück zum Zitat Svegliati-Baroni G, Ridolfi F, Di Sario A, et al. Insulin and insulin-like growth factor-1 stimulate proliferation and type I collagen accumulation by human hepatic stellate cells: differential effects on signal transduction pathways. Hepatology. 1999;29(6):1743–51.CrossRefPubMed Svegliati-Baroni G, Ridolfi F, Di Sario A, et al. Insulin and insulin-like growth factor-1 stimulate proliferation and type I collagen accumulation by human hepatic stellate cells: differential effects on signal transduction pathways. Hepatology. 1999;29(6):1743–51.CrossRefPubMed
15.
Zurück zum Zitat Van Wagner LB, Rinella ME. The role of insulin-sensitizing agents in the treatment of nonalcoholic steatohepatitis. Therap Adv Gastroenterol. 2011;4(4):249–63.CrossRefPubMedPubMedCentral Van Wagner LB, Rinella ME. The role of insulin-sensitizing agents in the treatment of nonalcoholic steatohepatitis. Therap Adv Gastroenterol. 2011;4(4):249–63.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Caldwell SH, Hespenheide EE, Redick JA, et al. A pilot study of a thiazolidinedione, troglitazone, in nonalcoholic steatohepatitis. Am J Gastroenterol. 2001;96(2):519–25.CrossRefPubMed Caldwell SH, Hespenheide EE, Redick JA, et al. A pilot study of a thiazolidinedione, troglitazone, in nonalcoholic steatohepatitis. Am J Gastroenterol. 2001;96(2):519–25.CrossRefPubMed
17.
Zurück zum Zitat Gerich JE. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med. 2010;27(2):136–42.CrossRefPubMedPubMedCentral Gerich JE. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med. 2010;27(2):136–42.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Mather A, Pollock C. Glucose handling by the kidney. Kidney Int Suppl. 2011;120:S1–6.CrossRef Mather A, Pollock C. Glucose handling by the kidney. Kidney Int Suppl. 2011;120:S1–6.CrossRef
19.
Zurück zum Zitat Mather A, Pollock C. Renal glucose transporters: novel targets for hyperglycemia management. Nat Rev Nephrol. 2010;6(5):307–11.CrossRefPubMed Mather A, Pollock C. Renal glucose transporters: novel targets for hyperglycemia management. Nat Rev Nephrol. 2010;6(5):307–11.CrossRefPubMed
20.
Zurück zum Zitat Kanai Y, Lee WS, You G, et al. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for d-glucose. J Clin Invest. 1994;93(1):397–404.CrossRefPubMedPubMedCentral Kanai Y, Lee WS, You G, et al. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for d-glucose. J Clin Invest. 1994;93(1):397–404.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Kurosaki E, Ogasawara H. Ipragliflozin and other sodium glucose cotransporter-2 (SGLT2) inhibitors in the treatment of type 2 diabetes: preclinical and clinical data. Pharmacol Ther. 2013;139(1):51–9.CrossRefPubMed Kurosaki E, Ogasawara H. Ipragliflozin and other sodium glucose cotransporter-2 (SGLT2) inhibitors in the treatment of type 2 diabetes: preclinical and clinical data. Pharmacol Ther. 2013;139(1):51–9.CrossRefPubMed
22.
Zurück zum Zitat Kashiwagi A, Kazuta K, Goto K, et al. Ipragliflozin in combination with metformin for the treatment of Japanese patients with type 2 diabetes: ILLUMINATE, a randomized, double-blind, placebo-controlled study. Diabetes Obes Metab. 2015;17(3):304–8.CrossRefPubMed Kashiwagi A, Kazuta K, Goto K, et al. Ipragliflozin in combination with metformin for the treatment of Japanese patients with type 2 diabetes: ILLUMINATE, a randomized, double-blind, placebo-controlled study. Diabetes Obes Metab. 2015;17(3):304–8.CrossRefPubMed
23.
Zurück zum Zitat Watanabe Y, Nakayama K, Taniuchi N, et al. Beneficial effects of canagliflozin in combination with pioglitazone on insulin sensitivity in rodent models of obese type 2 diabetes. PLoS One. 2015;10(1):e0116851. Watanabe Y, Nakayama K, Taniuchi N, et al. Beneficial effects of canagliflozin in combination with pioglitazone on insulin sensitivity in rodent models of obese type 2 diabetes. PLoS One. 2015;10(1):e0116851.
24.
Zurück zum Zitat Vickers SP, Cheetham SC, Headland KR, et al. Combination of the sodium-glucose cotransporter-2 inhibitor empagliflozin with orlistat or sibutramine further improves the body-weight reduction and glucose homeostasis of obese rats fed a cafeteria diet. Diabetes Metab Syndr Obes. 2014;1(7):265–75.CrossRef Vickers SP, Cheetham SC, Headland KR, et al. Combination of the sodium-glucose cotransporter-2 inhibitor empagliflozin with orlistat or sibutramine further improves the body-weight reduction and glucose homeostasis of obese rats fed a cafeteria diet. Diabetes Metab Syndr Obes. 2014;1(7):265–75.CrossRef
25.
Zurück zum Zitat Takahara M, Shiraiwa T, Matsuoka TA, et al. Ameliorated pancreatic β cell dysfunction in type 2 diabetic patients treated with a sodium-glucose cotransporter 2 inhibitor ipragliflozin. Endocr J. 2015;62(1):77–86.CrossRefPubMed Takahara M, Shiraiwa T, Matsuoka TA, et al. Ameliorated pancreatic β cell dysfunction in type 2 diabetic patients treated with a sodium-glucose cotransporter 2 inhibitor ipragliflozin. Endocr J. 2015;62(1):77–86.CrossRefPubMed
26.
Zurück zum Zitat Hayashizaki-Someya Y, Kurosaki E, Takasu T, et al. Ipragliflozin, an SGLT2 inhibitor, exhibits a prophylactic effect on hepatic steatosis and fibrosis induced by choline-deficient l-amino acid-defined diet in rats. Eur J Pharmacol. 2015;5(754):19–24. Hayashizaki-Someya Y, Kurosaki E, Takasu T, et al. Ipragliflozin, an SGLT2 inhibitor, exhibits a prophylactic effect on hepatic steatosis and fibrosis induced by choline-deficient l-amino acid-defined diet in rats. Eur J Pharmacol. 2015;5(754):19–24.
27.
Zurück zum Zitat Kodama Y, Kisseleva T, Iwaisako K, et al. c-Jun N-terminal kinase-1 from hematopoietic cells mediates progression from hepatic steatosis to steatohepatitis and fibrosis in mice. Gastroenterology. 2009;137(4):1467–77.CrossRefPubMedPubMedCentral Kodama Y, Kisseleva T, Iwaisako K, et al. c-Jun N-terminal kinase-1 from hematopoietic cells mediates progression from hepatic steatosis to steatohepatitis and fibrosis in mice. Gastroenterology. 2009;137(4):1467–77.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Miura K, Kodama Y, Inokuchi S, et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology. 2010;139(1):323–34.CrossRefPubMedPubMedCentral Miura K, Kodama Y, Inokuchi S, et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology. 2010;139(1):323–34.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Sato T, Asahi Y, Toide K, et al. Insulin resistance in skeletal muscle of the male Otsuka Long-Evans Tokushima fatty rat, a new model of NIDDM. Diabetologia. 1995;38(9):1033–41.CrossRefPubMed Sato T, Asahi Y, Toide K, et al. Insulin resistance in skeletal muscle of the male Otsuka Long-Evans Tokushima fatty rat, a new model of NIDDM. Diabetologia. 1995;38(9):1033–41.CrossRefPubMed
30.
Zurück zum Zitat Katz A, Nambi SS, Mather K, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000;85(7):2402–10.CrossRefPubMed Katz A, Nambi SS, Mather K, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000;85(7):2402–10.CrossRefPubMed
31.
Zurück zum Zitat Yoshiji H, Kuriyama S, Yoshii J, et al. Angiotensin-II type 1 receptor interaction is a major regulator for liver fibrosis development in rats. Hepatology. 2001;34(4 Pt 1):745–50.CrossRefPubMed Yoshiji H, Kuriyama S, Yoshii J, et al. Angiotensin-II type 1 receptor interaction is a major regulator for liver fibrosis development in rats. Hepatology. 2001;34(4 Pt 1):745–50.CrossRefPubMed
32.
Zurück zum Zitat Yoshiji H, Kuriyama S, Hicklin DJ, et al. KDR/Flk-1 is a major regulator of vascular endothelial growth factor-induced tumor development and angiogenesis in murine hepatocellular carcinoma cells. Hepatology. 1999;30(5):1179–86.CrossRefPubMed Yoshiji H, Kuriyama S, Hicklin DJ, et al. KDR/Flk-1 is a major regulator of vascular endothelial growth factor-induced tumor development and angiogenesis in murine hepatocellular carcinoma cells. Hepatology. 1999;30(5):1179–86.CrossRefPubMed
33.
Zurück zum Zitat Kaji K, Yoshiji H, Ikenaka Y, et al. Dipeptidyl peptidase-4 inhibitor attenuates hepatic fibrosis via suppression of activated hepatic stellate cell in rats. J Gastroenterol. 2014;49:481–91.CrossRefPubMed Kaji K, Yoshiji H, Ikenaka Y, et al. Dipeptidyl peptidase-4 inhibitor attenuates hepatic fibrosis via suppression of activated hepatic stellate cell in rats. J Gastroenterol. 2014;49:481–91.CrossRefPubMed
34.
Zurück zum Zitat Kaji K, Yoshiji H, Kitade M, et al. Impact of insulin resistance on the progression of chronic liver diseases. Int J Mol Med. 2008;22(6):801–43.PubMed Kaji K, Yoshiji H, Kitade M, et al. Impact of insulin resistance on the progression of chronic liver diseases. Int J Mol Med. 2008;22(6):801–43.PubMed
35.
Zurück zum Zitat Spector SA, Olson ET, Gumbs AA, et al. Human insulin receptor and insulin signaling proteins in hepatic disease. J Surg Res. 1999;83(1):32–5.CrossRefPubMed Spector SA, Olson ET, Gumbs AA, et al. Human insulin receptor and insulin signaling proteins in hepatic disease. J Surg Res. 1999;83(1):32–5.CrossRefPubMed
36.
Zurück zum Zitat Bhunchet E, Eishi Y, Wake K. Contribution of immune response to the hepatic fibrosis induced by porcine serum. Hepatology. 1996;4:811–7.CrossRef Bhunchet E, Eishi Y, Wake K. Contribution of immune response to the hepatic fibrosis induced by porcine serum. Hepatology. 1996;4:811–7.CrossRef
37.
Zurück zum Zitat Galli A, Ceni E, Crabb DW, et al. Antidiabetic thiazolidinediones inhibit invasiveness of pancreatic cancer cells via PPAR-gamma independent mechanisms. Gut. 2004;53(11):1688–97.CrossRefPubMedPubMedCentral Galli A, Ceni E, Crabb DW, et al. Antidiabetic thiazolidinediones inhibit invasiveness of pancreatic cancer cells via PPAR-gamma independent mechanisms. Gut. 2004;53(11):1688–97.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Ota T, Takamura T, Kurita S, et al. Insulin resistance accelerates a dietary rat model of nonalcoholic steatohepatitis. Gastroenterology. 2007;132(1):282–93.CrossRefPubMed Ota T, Takamura T, Kurita S, et al. Insulin resistance accelerates a dietary rat model of nonalcoholic steatohepatitis. Gastroenterology. 2007;132(1):282–93.CrossRefPubMed
39.
Zurück zum Zitat Peverill W, Powell LW, Skoien R. Evolving concepts in the pathogenesis of NASH: beyond steatosis and inflammation. Int J Mol Sci. 2014;15(5):8591–638.CrossRefPubMedPubMedCentral Peverill W, Powell LW, Skoien R. Evolving concepts in the pathogenesis of NASH: beyond steatosis and inflammation. Int J Mol Sci. 2014;15(5):8591–638.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Suzuki M, Takeda M, et al. Tofogliflozin, a sodium/glucose cotransporter 2 inhibitor, attenuates body weight gain and fat accumulation in diabetic and obese animal models. Nutr Diabetes. 2014;7(4):e125.CrossRef Suzuki M, Takeda M, et al. Tofogliflozin, a sodium/glucose cotransporter 2 inhibitor, attenuates body weight gain and fat accumulation in diabetic and obese animal models. Nutr Diabetes. 2014;7(4):e125.CrossRef
41.
Zurück zum Zitat Oliveira AG, Carvalho BM, Tobar N, et al. Physical exercise reduces circulating lipopolysaccharide and TLR4 activation and improves insulin signaling in tissues of DIO rats. Diabetes. 2011;60(3):784–96.CrossRefPubMedPubMedCentral Oliveira AG, Carvalho BM, Tobar N, et al. Physical exercise reduces circulating lipopolysaccharide and TLR4 activation and improves insulin signaling in tissues of DIO rats. Diabetes. 2011;60(3):784–96.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Gao X, Yan D, Zhao Y, et al. Moderate calorie restriction to achieve normal weight reverses β-cell dysfunction in diet-induced obese mice: involvement of autophagy. Nutr Metab (Lond). 2015;6(12):34.CrossRef Gao X, Yan D, Zhao Y, et al. Moderate calorie restriction to achieve normal weight reverses β-cell dysfunction in diet-induced obese mice: involvement of autophagy. Nutr Metab (Lond). 2015;6(12):34.CrossRef
Metadaten
Titel
Ipragliflozin, a sodium–glucose cotransporter 2 inhibitor, ameliorates the development of liver fibrosis in diabetic Otsuka Long–Evans Tokushima fatty rats
verfasst von
Norihisa Nishimura
Mitsuteru Kitade
Ryuichi Noguchi
Tadashi Namisaki
Kei Moriya
Kosuke Takeda
Yasushi Okura
Yosuke Aihara
Akitoshi Douhara
Hideto Kawaratani
Kiyoshi Asada
Hitoshi Yoshiji
Publikationsdatum
29.03.2016
Verlag
Springer Japan
Erschienen in
Journal of Gastroenterology / Ausgabe 12/2016
Print ISSN: 0944-1174
Elektronische ISSN: 1435-5922
DOI
https://doi.org/10.1007/s00535-016-1200-6

Weitere Artikel der Ausgabe 12/2016

Journal of Gastroenterology 12/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.