Skip to main content
Erschienen in: European Spine Journal 3/2008

01.03.2008 | Original Article

The distribution of mineral density in the cervical vertebral endplates

verfasst von: Magdalena Müller-Gerbl, Stefan Weißer, Ulrich Linsenmeier

Erschienen in: European Spine Journal | Ausgabe 3/2008

Einloggen, um Zugang zu erhalten

Abstract

Subsidence of various constructs into the vertebral body is a well-known complication in anterior fusion. Information on bone structure is needed, as a basis for improving these procedures. There are, however, no data available on the distribution of mineral density within vertebral endplates. In this study the regional distribution of mineralization within the cervical endplates with respect to endplate orientation (inferior and superior endplate) and level distribution (C3–C7) was examined by means of computed tomographic osteoabsorptiometry (CT-OAM). The distribution of mineralization in 80 cervical endplates of 8 spinal columns (4 male, 4 female, age range 38–62 years) in vertebrae C3–C7 was investigated by CT osteoabsorptiometry (CT-OAM). The subchondral mineralization distribution revealed considerable topographic differences within each endplate, whereby the areas of greatest density were found in the peripheral marginal zones with maxima in the posterolateral surface, whereas mineralization density was much lower in the central areas. The superior endplates showed an additional posteromedial maximum, whereas the inferior endplates showed an additional anterior mineralization maximum. Comparison of the distribution patters of inferior and superior endplates at different levels from C3 to C7 reveals a uniform increase of mineralization in the anterior portions from cranial to caudal. The mineralization distribution showed characteristic reproducible patterns. The maximal values occurred in the posterolateral parts, and can thus be considered a morphological substrate of high long-term loading. This can serve as a basis for improved prosthesis design and the anchorage point for various fusion techniques.
Literatur
1.
Zurück zum Zitat Bogduk N, Mercer S (2000) Biomechanics of the cervical spine. I: Normal kinematics. Clin Biomech 15:633–648CrossRef Bogduk N, Mercer S (2000) Biomechanics of the cervical spine. I: Normal kinematics. Clin Biomech 15:633–648CrossRef
2.
Zurück zum Zitat Diedrich O, Perlick L, Schmitt O, Kraft CN (2001) Radiographic characteristics on conventional radiographs after posterior lumbar interbody fusion: comparative study between radiotranslucent and radiopaque cages. J Spinal Disord 14:522–532PubMedCrossRef Diedrich O, Perlick L, Schmitt O, Kraft CN (2001) Radiographic characteristics on conventional radiographs after posterior lumbar interbody fusion: comparative study between radiotranslucent and radiopaque cages. J Spinal Disord 14:522–532PubMedCrossRef
3.
Zurück zum Zitat Edwards WT, Zheng Y, Ferrara LA, Yuan HA (2001) Structural features and thickness of the vertebral cortex in the thoracolumbar spine. Spine 26:218–225PubMedCrossRef Edwards WT, Zheng Y, Ferrara LA, Yuan HA (2001) Structural features and thickness of the vertebral cortex in the thoracolumbar spine. Spine 26:218–225PubMedCrossRef
4.
Zurück zum Zitat Ferguson SJ, Steffen T (2003) Biomechanics of the aging spine. Eur Spine J 12(Suppl 2):S97–S103PubMedCrossRef Ferguson SJ, Steffen T (2003) Biomechanics of the aging spine. Eur Spine J 12(Suppl 2):S97–S103PubMedCrossRef
5.
Zurück zum Zitat Grant JP, Oxland TR, Dvorak MF (2001) Mapping the structural properties of the lumbosacral vertebral endplates. Spine 26:889–896PubMedCrossRef Grant JP, Oxland TR, Dvorak MF (2001) Mapping the structural properties of the lumbosacral vertebral endplates. Spine 26:889–896PubMedCrossRef
6.
Zurück zum Zitat Grant JP, Oxland TR, Dvorak MF, Fisher CG (2002) The effects of bone density and disc degeneration on the structural property distributions in the lower lumbar vertebral endplates. J Orthop Res 20:1115–1120PubMedCrossRef Grant JP, Oxland TR, Dvorak MF, Fisher CG (2002) The effects of bone density and disc degeneration on the structural property distributions in the lower lumbar vertebral endplates. J Orthop Res 20:1115–1120PubMedCrossRef
7.
Zurück zum Zitat Holmes A, Hukins D, Freemont A (1993) End-plate displacement during compression of lumbar vertebra-disc-vertebra segments and the mechanism of failure. Spine 18:128–135PubMedCrossRef Holmes A, Hukins D, Freemont A (1993) End-plate displacement during compression of lumbar vertebra-disc-vertebra segments and the mechanism of failure. Spine 18:128–135PubMedCrossRef
8.
Zurück zum Zitat Ikeuchi M, Yamamoto H, Shibata T, Otani M (2001) Mechanical augmentation of the vertebral body by calcium phosphate cement injection. J Orthop Sci 6:39–45PubMedCrossRef Ikeuchi M, Yamamoto H, Shibata T, Otani M (2001) Mechanical augmentation of the vertebral body by calcium phosphate cement injection. J Orthop Sci 6:39–45PubMedCrossRef
9.
Zurück zum Zitat Jost B, Cripton P, Lund T, Oxland TR, Lippuner K, Jaeger P, Nolte LP (1998) Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density. Eur Spine J 7:132–141PubMedCrossRef Jost B, Cripton P, Lund T, Oxland TR, Lippuner K, Jaeger P, Nolte LP (1998) Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density. Eur Spine J 7:132–141PubMedCrossRef
10.
Zurück zum Zitat Kettler A, Wilke H-J, Dietl R, Krammer M, Lumenta C, Claes L (2000) Stabilizing effect of posterior lumbar interbody fusion cages before and after cyclic loading. J Neurosurg 92(1 Suppl):87–92PubMed Kettler A, Wilke H-J, Dietl R, Krammer M, Lumenta C, Claes L (2000) Stabilizing effect of posterior lumbar interbody fusion cages before and after cyclic loading. J Neurosurg 92(1 Suppl):87–92PubMed
11.
Zurück zum Zitat Kothari M, Keaveny TM, Lin JC, Newitt DC, Genant HK (1998) Impact of spatial resolution on the prediction of trabecular architecture parameters. Bone 22:437–443PubMedCrossRef Kothari M, Keaveny TM, Lin JC, Newitt DC, Genant HK (1998) Impact of spatial resolution on the prediction of trabecular architecture parameters. Bone 22:437–443PubMedCrossRef
12.
Zurück zum Zitat Kumar A, Doherty B (1993) Biomechanical testing of vertebral endplates strength: a cadaver study. NASS 8th Annual Meeting, San Diego Kumar A, Doherty B (1993) Biomechanical testing of vertebral endplates strength: a cadaver study. NASS 8th Annual Meeting, San Diego
13.
Zurück zum Zitat Li JY, Zhu QA, Zhao WD, Lin LJ, Zhang MC, Huang WH (2003) Role of the biomechanical property of the endplate in anterior cervical fusion. Di Yi Jun Yi Da Xue Xue Bao 23(5):402–408PubMed Li JY, Zhu QA, Zhao WD, Lin LJ, Zhang MC, Huang WH (2003) Role of the biomechanical property of the endplate in anterior cervical fusion. Di Yi Jun Yi Da Xue Xue Bao 23(5):402–408PubMed
14.
Zurück zum Zitat Lim TH, Kwon H, Jeon CH, Kim JG, Sokolowski M, Natarajan R, An HS, Andersson GB (2001) Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anterior cervical spine fusion. Spine 26:951–956PubMedCrossRef Lim TH, Kwon H, Jeon CH, Kim JG, Sokolowski M, Natarajan R, An HS, Andersson GB (2001) Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anterior cervical spine fusion. Spine 26:951–956PubMedCrossRef
15.
Zurück zum Zitat Link HD, McAfee PC, Pimenta L (2004) Choosing a cervical disc replacement. Spine J 4(Suppl):294S–302SPubMedCrossRef Link HD, McAfee PC, Pimenta L (2004) Choosing a cervical disc replacement. Spine J 4(Suppl):294S–302SPubMedCrossRef
16.
Zurück zum Zitat Lowe TG, Shukor H, Wilson LA, O´Brien MF, Smith DAB, Diekmann MJ, Trommeter J (2004) A biomechanical study of regional endplate strength and cage morphology as it relates to structural interbody support. Spine 29:2389–2394PubMedCrossRef Lowe TG, Shukor H, Wilson LA, O´Brien MF, Smith DAB, Diekmann MJ, Trommeter J (2004) A biomechanical study of regional endplate strength and cage morphology as it relates to structural interbody support. Spine 29:2389–2394PubMedCrossRef
17.
Zurück zum Zitat McAfee P (1999) Interbody fusion cages in reconstructive operations on the spine. J Bone Joint Surg Am 81:859–880PubMed McAfee P (1999) Interbody fusion cages in reconstructive operations on the spine. J Bone Joint Surg Am 81:859–880PubMed
18.
Zurück zum Zitat Millard J, Augart P, Link T, Kothari M, Newitt DC, Genant HK, Majumdar S (1998) Power spectral analysis of vertebral trabecular bone structure from radiographs: orientation dependence and correlation with bone mineral density and mechanical properties. Calcif Tissue Int 63:482–489PubMedCrossRef Millard J, Augart P, Link T, Kothari M, Newitt DC, Genant HK, Majumdar S (1998) Power spectral analysis of vertebral trabecular bone structure from radiographs: orientation dependence and correlation with bone mineral density and mechanical properties. Calcif Tissue Int 63:482–489PubMedCrossRef
19.
Zurück zum Zitat Mosekilde L (1993) Vertebral structure and strength in vivo and in vitro. Calcif Tissue Int 53(Suppl 1):S121–S125, discussion S125–S126PubMedCrossRef Mosekilde L (1993) Vertebral structure and strength in vivo and in vitro. Calcif Tissue Int 53(Suppl 1):S121–S125, discussion S125–S126PubMedCrossRef
20.
Zurück zum Zitat Mosekilde L, Mosekilde L, Danielsen CC (1987) Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone 8:79–85PubMedCrossRef Mosekilde L, Mosekilde L, Danielsen CC (1987) Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone 8:79–85PubMedCrossRef
21.
Zurück zum Zitat Muller-Gerbl M (1998) The subchondral bone plate. Adv Anat Embryol Cell Biol 141(III–XI):1–134 Muller-Gerbl M (1998) The subchondral bone plate. Adv Anat Embryol Cell Biol 141(III–XI):1–134
22.
Zurück zum Zitat Muller-Gerbl M, Putz R, Hodapp N, Schulte E, Wimmer B (1989) Computed tomography-osteoabsorptiometry for assessing the density distribution of subchondral bone as a measure of long-term mechanical adaptation in individual joints. Skeletal Radiol 18:507–512PubMedCrossRef Muller-Gerbl M, Putz R, Hodapp N, Schulte E, Wimmer B (1989) Computed tomography-osteoabsorptiometry for assessing the density distribution of subchondral bone as a measure of long-term mechanical adaptation in individual joints. Skeletal Radiol 18:507–512PubMedCrossRef
23.
Zurück zum Zitat Muller-Gerbl M, Putz R, Hodapp N, Schulte E, Wimmer B (1990) Computed tomography-osteoabsorptiometry: a method of assessing the mechanical condition of the major joints in a living subject. Clin Biomech 5:193–198CrossRef Muller-Gerbl M, Putz R, Hodapp N, Schulte E, Wimmer B (1990) Computed tomography-osteoabsorptiometry: a method of assessing the mechanical condition of the major joints in a living subject. Clin Biomech 5:193–198CrossRef
24.
Zurück zum Zitat Muller-Gerbl M, Putz R, Hodapp N, Schulte E, Wimmer B (1990) Demonstration of subchondral density pattern using CT-osteoabsorptiometry (CT-OAM) for the assessment of individual joint stress in live patients. Z Orthop Ihre Grenzgeb 128:128–133PubMedCrossRef Muller-Gerbl M, Putz R, Hodapp N, Schulte E, Wimmer B (1990) Demonstration of subchondral density pattern using CT-osteoabsorptiometry (CT-OAM) for the assessment of individual joint stress in live patients. Z Orthop Ihre Grenzgeb 128:128–133PubMedCrossRef
25.
Zurück zum Zitat Muller-Gerbl M, Putz R, Kenn R (1992) Demonstration of subchondral bone density patterns by three-dimensional CT osteoabsorptiometry as a noninvasive method for in vivo assessment of individual long-term stresses in joints. J Bone Miner Res 2:S411–S418CrossRef Muller-Gerbl M, Putz R, Kenn R (1992) Demonstration of subchondral bone density patterns by three-dimensional CT osteoabsorptiometry as a noninvasive method for in vivo assessment of individual long-term stresses in joints. J Bone Miner Res 2:S411–S418CrossRef
26.
Zurück zum Zitat Odgaard A (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20:315–328PubMedCrossRef Odgaard A (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20:315–328PubMedCrossRef
27.
Zurück zum Zitat Overaker D, Langrana NA, Cuitino A (1999) Finite element analysis of vertebral body mechanics with a nonlinear microstructural model for the trabecular core. J Biomech Eng 121:542–550PubMedCrossRef Overaker D, Langrana NA, Cuitino A (1999) Finite element analysis of vertebral body mechanics with a nonlinear microstructural model for the trabecular core. J Biomech Eng 121:542–550PubMedCrossRef
28.
Zurück zum Zitat Oxland TR, Grant JP, Dvorak MF, Fisher CG (2003) Effects of endplate removal on the structural properties of the lower lumbar vertebral bodies. Spine 28:771–777PubMedCrossRef Oxland TR, Grant JP, Dvorak MF, Fisher CG (2003) Effects of endplate removal on the structural properties of the lower lumbar vertebral bodies. Spine 28:771–777PubMedCrossRef
29.
Zurück zum Zitat Panjabi MM, Chen NC, Shin EK, Wang J-L (2001) The cortical shell architecture of human cervical vertebral bodies. Spine 26:2478–2484PubMedCrossRef Panjabi MM, Chen NC, Shin EK, Wang J-L (2001) The cortical shell architecture of human cervical vertebral bodies. Spine 26:2478–2484PubMedCrossRef
30.
Zurück zum Zitat Pitzen T, Schmitz B, Georg T, Barbier D, Beuter T, Steudel WI, Reith W (2004) Variation of endplate thickness in the cervical spine. Eur Spine J 13:235–240PubMedCrossRef Pitzen T, Schmitz B, Georg T, Barbier D, Beuter T, Steudel WI, Reith W (2004) Variation of endplate thickness in the cervical spine. Eur Spine J 13:235–240PubMedCrossRef
31.
Zurück zum Zitat Polikeit A, Ferguson SJ, Nolte LP, Orr TE (2003) The importance of the endplate for interbody cages in the lumbar spine. Eur Spine J 12:556–561PubMedCrossRef Polikeit A, Ferguson SJ, Nolte LP, Orr TE (2003) The importance of the endplate for interbody cages in the lumbar spine. Eur Spine J 12:556–561PubMedCrossRef
32.
Zurück zum Zitat Porto Filho MR, Pastorello MT, Defino HL (2005) Experimental study of the participation of the vertebral endplate in the integration of bone grafts. Eur Spine J 14:965–970PubMedCrossRef Porto Filho MR, Pastorello MT, Defino HL (2005) Experimental study of the participation of the vertebral endplate in the integration of bone grafts. Eur Spine J 14:965–970PubMedCrossRef
33.
Zurück zum Zitat Putz R (1981) Funktionelle Anatomie der Halswirbelsäule. Normale und Pathologische Anatomie 43. Thieme, Stuttgart Putz R (1981) Funktionelle Anatomie der Halswirbelsäule. Normale und Pathologische Anatomie 43. Thieme, Stuttgart
34.
Zurück zum Zitat Roberts S, McCall IW, Menage J, Haddaway MJ, Eisenstein SM (1997) Does the thickness of the vertebral subchondral bone reflect the composition of the intervertebral disc? Eur Spine J 6:385–389PubMedCrossRef Roberts S, McCall IW, Menage J, Haddaway MJ, Eisenstein SM (1997) Does the thickness of the vertebral subchondral bone reflect the composition of the intervertebral disc? Eur Spine J 6:385–389PubMedCrossRef
35.
Zurück zum Zitat Roberts S, Menage J, Urban JPG (1989) Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine 14:166–174PubMedCrossRef Roberts S, Menage J, Urban JPG (1989) Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine 14:166–174PubMedCrossRef
36.
Zurück zum Zitat Schmitz B, Pitzen T, Beuter T, Steudel WI, Reith W (2004) Regional variations in the thickness of cervical spine endplates as measured by computed tomography. Acta Radiol 45:53–58PubMedCrossRef Schmitz B, Pitzen T, Beuter T, Steudel WI, Reith W (2004) Regional variations in the thickness of cervical spine endplates as measured by computed tomography. Acta Radiol 45:53–58PubMedCrossRef
37.
Zurück zum Zitat Steffen T, Tsantrizos A, Aebi M (2000) Effect of implant design and endplate preparation on the compressive strength of interbody fusion constructs. Spine 25:1077–1084PubMedCrossRef Steffen T, Tsantrizos A, Aebi M (2000) Effect of implant design and endplate preparation on the compressive strength of interbody fusion constructs. Spine 25:1077–1084PubMedCrossRef
38.
Zurück zum Zitat van Dieen J, Kingma I, Meijer R, Hänsel L, Huiskes R (2001) Stress distribution changes in bovine vertebrae just below the endplate after sustained loading. Clin Biomech 16(Suppl 1):S135–S142 van Dieen J, Kingma I, Meijer R, Hänsel L, Huiskes R (2001) Stress distribution changes in bovine vertebrae just below the endplate after sustained loading. Clin Biomech 16(Suppl 1):S135–S142
39.
Zurück zum Zitat Wenger K, Pross A, Wilke H-J, Gossee F, Vahldiek M, Claes LE (1999) Bone mineral density of the vertebral endplate: an in vitro comparison of normals, degeneratives and osteoporotics. 26th Annual Meeting, ISSLS, Kona Wenger K, Pross A, Wilke H-J, Gossee F, Vahldiek M, Claes LE (1999) Bone mineral density of the vertebral endplate: an in vitro comparison of normals, degeneratives and osteoporotics. 26th Annual Meeting, ISSLS, Kona
Metadaten
Titel
The distribution of mineral density in the cervical vertebral endplates
verfasst von
Magdalena Müller-Gerbl
Stefan Weißer
Ulrich Linsenmeier
Publikationsdatum
01.03.2008
Verlag
Springer-Verlag
Erschienen in
European Spine Journal / Ausgabe 3/2008
Print ISSN: 0940-6719
Elektronische ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-008-0601-5

Weitere Artikel der Ausgabe 3/2008

European Spine Journal 3/2008 Zur Ausgabe

Announcements

Announcements

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.