Skip to main content
Erschienen in: European Spine Journal 10/2009

01.10.2009 | Original Article

Non-fusion instrumentation of the lumbar spine with a hinged pedicle screw rod system: an in vitro experiment

verfasst von: Werner Schmoelz, U. Onder, A. Martin, A. von Strempel

Erschienen in: European Spine Journal | Ausgabe 10/2009

Einloggen, um Zugang zu erhalten

Abstract

In advanced stages of degenerative disease of the lumbar spine instrumented spondylodesis is still the golden standard treatment. However, in recent years dynamic stabilisation devices are being implanted to treat the segmental instability due to iatrogenic decompression or segmental degeneration. The purpose of the present study was to investigate the stabilising effect of a classical pedicle screw/rod combination, with a moveable hinge joint connection between the screw and rod allowing one degree of freedom (cosmicMIA). Six human lumbar spines (L2–5) were loaded in a spine tester with pure moments of ±7.5 Nm in lateral bending, flexion/extension and axial rotation. The range of motion (ROM) and the neutral zone were determined for the following states: (1) intact, (2) monosegmental dynamic instrumentation (L4-5), (3) bisegmental dynamic instrumentation (L3–5), (4) bisegmental decompression (L3–5), (5) bisegmental dynamic instrumentation (L3–5) and (6) bisegmental rigid instrumentation (L3–5). Compared to the intact, with monosegmental instrumentation (2) the ROM of the treated segment was reduced to 47, 40 and 77% in lateral bending, flexion/extension and axial rotation, respectively. Bisegmental dynamic instrumentation (3) further reduced the ROM in L4-5 compared to monosegmental instrumentation to 25% (lateral bending), 28% (flexion/extension) and 57% (axial rotation). Bisegmental surgical decompression (4) caused an increase in ROM in both segments (L3–4 and L4–5) to approximately 125% and approximately 135% and 187–234% in lateral bending, flexion/extension and axial rotation, respectively. Compared to the intact state, bisegmental dynamic instrumentation after surgical decompression reduced the ROM of the two-bridged segments to 29–35% in lateral bending and 33–38% in flexion/extension. In axial rotation, the ROM was in the range of the intact specimen (87–117%). A rigid instrumentation (6) further reduced the ROM of the two-bridged segments to 20–30, 23–27 and 50–68% in lateral bending, flexion/extension and axial rotation, respectively. The results of the present study showed that compared to the intact specimen the investigated hinged dynamic stabilisation device reduced the ROM after bisegmental decompression in lateral bending and flexion/extension. Following bisegmental decompression and the thereby caused large rotational instability the device is capable of restoring the motion in axial rotation back to values in the range of the intact motion segments.
Literatur
6.
Zurück zum Zitat Disch AC, Schmoelz W, Matziolis G, Schneider SV, Knop C, Putzier M (2008) Higher risk of adjacent segment degeneration after floating fusions: long-term outcome after low lumbar spine fusions. J Spinal Disord Tech 21:79–85. doi:10.1097/BSD.0b013e3180577259 PubMedCrossRef Disch AC, Schmoelz W, Matziolis G, Schneider SV, Knop C, Putzier M (2008) Higher risk of adjacent segment degeneration after floating fusions: long-term outcome after low lumbar spine fusions. J Spinal Disord Tech 21:79–85. doi:10.​1097/​BSD.​0b013e3180577259​ PubMedCrossRef
9.
Zurück zum Zitat Ghiselli G, Wang JC, Bhatia NN, Hsu WK, Dawson EG (2004) Adjacent segment degeneration in the lumbar spine. J Bone Joint Surg Am 86A:1497–1503 Ghiselli G, Wang JC, Bhatia NN, Hsu WK, Dawson EG (2004) Adjacent segment degeneration in the lumbar spine. J Bone Joint Surg Am 86A:1497–1503
13.
Zurück zum Zitat Kettler A, Drumm J, Heuer F, Haeussler K, Mack C, Claes L, Wilke HJ (2008) Can a modified interspinous spacer prevent instability in axial rotation and lateral bending? A biomechanical in vitro study resulting in a new idea. Clin Biomech (Bristol, Avon) 23:242–247. doi:10.1016/j.clinbiomech.2007.09.004 CrossRef Kettler A, Drumm J, Heuer F, Haeussler K, Mack C, Claes L, Wilke HJ (2008) Can a modified interspinous spacer prevent instability in axial rotation and lateral bending? A biomechanical in vitro study resulting in a new idea. Clin Biomech (Bristol, Avon) 23:242–247. doi:10.​1016/​j.​clinbiomech.​2007.​09.​004 CrossRef
15.
Zurück zum Zitat Kim SM, Lim TJ, Paterno J, Kim DH (2004) A biomechanical comparison of supplementary posterior translaminar facet and transfacetopedicular screw fixation after anterior lumbar interbody fusion. J Neurosurg Spine 1:101–107PubMedCrossRef Kim SM, Lim TJ, Paterno J, Kim DH (2004) A biomechanical comparison of supplementary posterior translaminar facet and transfacetopedicular screw fixation after anterior lumbar interbody fusion. J Neurosurg Spine 1:101–107PubMedCrossRef
16.
Zurück zum Zitat Knop C, Lange U, Bastian L, Blauth M (2000) Three-dimensional motion analysis with Synex. Comparative biomechanical test series with a new vertebral body replacement for the thoracolumbar spine. Eur Spine J 9:472–485. doi:10.1007/s005860000185 PubMedCrossRef Knop C, Lange U, Bastian L, Blauth M (2000) Three-dimensional motion analysis with Synex. Comparative biomechanical test series with a new vertebral body replacement for the thoracolumbar spine. Eur Spine J 9:472–485. doi:10.​1007/​s005860000185 PubMedCrossRef
18.
Zurück zum Zitat Niosi CA, Zhu QA, Wilson DC, Keynan O, Wilson DR, Oxland TR (2006) Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro study. Eur Spine J 15:913–922. doi:10.1007/s00586-005-0948-9 PubMedCrossRef Niosi CA, Zhu QA, Wilson DC, Keynan O, Wilson DR, Oxland TR (2006) Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro study. Eur Spine J 15:913–922. doi:10.​1007/​s00586-005-0948-9 PubMedCrossRef
19.
Zurück zum Zitat Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine 13:1129–1134PubMedCrossRef Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine 13:1129–1134PubMedCrossRef
22.
Zurück zum Zitat Panjabi MM, Oxland TR, Yamamoto I, Crisco JJ (1994) Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg Am 76:413–424PubMed Panjabi MM, Oxland TR, Yamamoto I, Crisco JJ (1994) Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg Am 76:413–424PubMed
24.
Zurück zum Zitat Quint U, Wilke HJ, Loer F, Claes L (1998) Laminectomy and functional impairment of the lumbar spine: the importance of muscle forces in flexible and rigid instrumented stabilization—a biomechanical study in vitro. Eur Spine J 7:229–238. doi:10.1007/s005860050062 PubMedCrossRef Quint U, Wilke HJ, Loer F, Claes L (1998) Laminectomy and functional impairment of the lumbar spine: the importance of muscle forces in flexible and rigid instrumented stabilization—a biomechanical study in vitro. Eur Spine J 7:229–238. doi:10.​1007/​s005860050062 PubMedCrossRef
25.
Zurück zum Zitat Schmoelz W, Huber JF, Nydegger T, Claes L, Wilke HJ (2003) Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech 16:418–423PubMed Schmoelz W, Huber JF, Nydegger T, Claes L, Wilke HJ (2003) Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech 16:418–423PubMed
26.
Zurück zum Zitat Schulte TL, Hurschler C, Haversath M, Liljenqvist U, Bullmann V, Filler TJ, Osada N, Fallenberg EM, Hackenberg L (2008) The effect of dynamic, semi-rigid implants on the range of motion of lumbar motion segments after decompression. Eur Spine J 17:1057–1065. doi:10.1007/s00586-008-0667-0 PubMedCrossRef Schulte TL, Hurschler C, Haversath M, Liljenqvist U, Bullmann V, Filler TJ, Osada N, Fallenberg EM, Hackenberg L (2008) The effect of dynamic, semi-rigid implants on the range of motion of lumbar motion segments after decompression. Eur Spine J 17:1057–1065. doi:10.​1007/​s00586-008-0667-0 PubMedCrossRef
27.
Zurück zum Zitat Scifert JL, Sairyo K, Goel VK, Grobler LJ, Grosland NM, Spratt KF, Chesmel KD (1999) Stability analysis of an enhanced load sharing posterior fixation device and its equivalent conventional device in a calf spine model. Spine 24:2206–2213. doi:10.1097/00007632-199911010-00006 PubMedCrossRef Scifert JL, Sairyo K, Goel VK, Grobler LJ, Grosland NM, Spratt KF, Chesmel KD (1999) Stability analysis of an enhanced load sharing posterior fixation device and its equivalent conventional device in a calf spine model. Spine 24:2206–2213. doi:10.​1097/​00007632-199911010-00006 PubMedCrossRef
28.
Zurück zum Zitat Stoll TM, Dubois G, Schwarzenbach O (2002) The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. Eur Spine J 11(Suppl 2):S170–S178PubMed Stoll TM, Dubois G, Schwarzenbach O (2002) The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. Eur Spine J 11(Suppl 2):S170–S178PubMed
29.
Zurück zum Zitat Wilke HJ, Drumm J, Haussler K, Mack C, Steudel WI, Kettler A (2008) Biomechanical effect of different lumbar interspinous implants on flexibility and intradiscal pressure. Eur Spine J 17:1049–1056PubMedCrossRef Wilke HJ, Drumm J, Haussler K, Mack C, Steudel WI, Kettler A (2008) Biomechanical effect of different lumbar interspinous implants on flexibility and intradiscal pressure. Eur Spine J 17:1049–1056PubMedCrossRef
33.
Zurück zum Zitat Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154. doi:10.1007/s005860050045 PubMedCrossRef Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154. doi:10.​1007/​s005860050045 PubMedCrossRef
Metadaten
Titel
Non-fusion instrumentation of the lumbar spine with a hinged pedicle screw rod system: an in vitro experiment
verfasst von
Werner Schmoelz
U. Onder
A. Martin
A. von Strempel
Publikationsdatum
01.10.2009
Verlag
Springer-Verlag
Erschienen in
European Spine Journal / Ausgabe 10/2009
Print ISSN: 0940-6719
Elektronische ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-009-1052-3

Weitere Artikel der Ausgabe 10/2009

European Spine Journal 10/2009 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.