Skip to main content
Erschienen in: European Spine Journal 12/2010

01.12.2010 | Original Article

The stabilizing potential of anterior, posterior and combined techniques for the reconstruction of a 2-level cervical corpectomy model: biomechanical study and first results of ATPS prototyping

verfasst von: Heiko Koller, Rene Schmidt, Michael Mayer, Wolfgang Hitzl, Juliane Zenner, Stefan Middendorf, Nicolaus Gräf, H. Resch, Hans-Joachim Willke

Erschienen in: European Spine Journal | Ausgabe 12/2010

Einloggen, um Zugang zu erhalten

Abstract

Clinical studies reported frequent failure with anterior instrumented multilevel cervical corpectomies. Hence, posterior augmentation was recommended but necessitates a second approach. Thus, an author group evaluated the feasibility, pull-out characteristics, and accuracy of anterior transpedicular screw (ATPS) fixation. Although first success with clinical application of ATPS has already been reported, no data exist on biomechanical characteristics of an ATPS-plate system enabling transpedicular end-level fixation in advanced instabilities. Therefore, we evaluated biomechanical qualities of an ATPS prototype C4–C7 for reduction of range of motion (ROM) and primary stability in a non-destructive setup among five constructs: anterior plate, posterior all-lateral mass screw construct, posterior construct with lateral mass screws C5 + C6 and end-level fixation using pedicle screws unilaterally or bilaterally, and a 360° construct. 12 human spines C3–T1 were divided into two groups. Four constructs were tested in group 1 and three in group 2; the ATPS prototypes were tested in both groups. Specimens were subjected to flexibility test in a spine motion tester at intact state and after 2-level corpectomy C5–C6 with subsequent reconstruction using a distractable cage and one of the osteosynthesis mentioned above. ROM in flexion–extension, axial rotation, and lateral bending was reported as normalized values. All instrumentations but the anterior plate showed significant reduction of ROM for all directions compared to the intact state. The 360° construct outperformed all others in terms of reducing ROM. While there were no significant differences between the 360° and posterior constructs in flexion–extension and lateral bending, the 360° constructs were significantly more stable in axial rotation. Concerning primary stability of ATPS prototypes, there were no significant differences compared to posterior-only constructs in flexion–extension and axial rotation. The 360° construct showed significant differences to the ATPS prototypes in flexion–extension, while no significant differences existed in axial rotation. But in lateral bending, the ATPS prototype and the anterior plate performed significantly worse than the posterior constructs. ATPS was shown to confer increased primary stability compared to the anterior plate in flexion–extension and axial rotation with the latter yielding significance. We showed that primary stability after 2-level corpectomy reconstruction using ATPS prototypes compared favorably to posterior systems and superior to anterior plates. From the biomechanical point, the 360° instrumentation was shown the most efficient for reconstruction of 2-level corpectomies. Further studies will elucidate whether fatigue testing will enhance the benefit of transpedicular anchorage with posterior constructs and ATPS.
Literatur
1.
Zurück zum Zitat Abddullah KG, Steinmetz MP, Mroz TE (2009) Morphometric and volumetric analysis of the lateral masses of the lower cervical spine. Spine 34:1476–1479CrossRef Abddullah KG, Steinmetz MP, Mroz TE (2009) Morphometric and volumetric analysis of the lateral masses of the lower cervical spine. Spine 34:1476–1479CrossRef
2.
Zurück zum Zitat Abumi K, Shono Y, Taneichi H, Itoh M, Kaneda K (1999) Correction of cervical kyphosis using pedicle screw fixation systems. Spine 24:2456–2462CrossRef Abumi K, Shono Y, Taneichi H, Itoh M, Kaneda K (1999) Correction of cervical kyphosis using pedicle screw fixation systems. Spine 24:2456–2462CrossRef
3.
Zurück zum Zitat Acosta LF, Aryan HE, Chou D, Ames CP (2008) Long-term biomechanical stability and clinical improvement after extended multilevel corpectomy and circumferential reconstruction of the cervical spine using titanium mesh cages. J Spinal Disord Tech 21:165–174PubMedCrossRef Acosta LF, Aryan HE, Chou D, Ames CP (2008) Long-term biomechanical stability and clinical improvement after extended multilevel corpectomy and circumferential reconstruction of the cervical spine using titanium mesh cages. J Spinal Disord Tech 21:165–174PubMedCrossRef
4.
Zurück zum Zitat Ames PC, Bozkus MH, Chamberlain RH, Acosta FL, Papadopoulos SM, Sonntag VKH, Crawford NR (2005) Biomechanics of stabilization after cervicothoracic compression-flexion injury. Spine 30:1505–1512PubMedCrossRef Ames PC, Bozkus MH, Chamberlain RH, Acosta FL, Papadopoulos SM, Sonntag VKH, Crawford NR (2005) Biomechanics of stabilization after cervicothoracic compression-flexion injury. Spine 30:1505–1512PubMedCrossRef
5.
Zurück zum Zitat Aramomi M, Masaki Y, Koshizuka, Kadota R, Okawa A, Koda M, Yamazaki M (2008) Anterior pedicle screw fixation for multilevel cervical corpectomy and spinal fusion. Acta Neurochir 150:575–582CrossRef Aramomi M, Masaki Y, Koshizuka, Kadota R, Okawa A, Koda M, Yamazaki M (2008) Anterior pedicle screw fixation for multilevel cervical corpectomy and spinal fusion. Acta Neurochir 150:575–582CrossRef
6.
Zurück zum Zitat Aryan HE, Sanchez-Mejia RO, Ben-Haim S, Ames CP (2007) Successful treatment of cervical myelopathy with minimal morbidity by circumferential decompression and fusion. Eur Spine J 16:1401–1409PubMedCrossRef Aryan HE, Sanchez-Mejia RO, Ben-Haim S, Ames CP (2007) Successful treatment of cervical myelopathy with minimal morbidity by circumferential decompression and fusion. Eur Spine J 16:1401–1409PubMedCrossRef
7.
Zurück zum Zitat Bogduk N, Mercer S (2000) Biomechanics of the cervical spine. I: Normal kinematics. Clin Biomech 15:633–648CrossRef Bogduk N, Mercer S (2000) Biomechanics of the cervical spine. I: Normal kinematics. Clin Biomech 15:633–648CrossRef
8.
Zurück zum Zitat Bozkus H, Ames CP, Chamberlain RH, Nottmeier EW, Sonntag VKH, Papadopoulos SM, Crawford NR (2005) Biomechanical analysis of rigid stabilization techniques for three-column injury in the lower cervical spine. Spine 30:915–922PubMedCrossRef Bozkus H, Ames CP, Chamberlain RH, Nottmeier EW, Sonntag VKH, Papadopoulos SM, Crawford NR (2005) Biomechanical analysis of rigid stabilization techniques for three-column injury in the lower cervical spine. Spine 30:915–922PubMedCrossRef
9.
Zurück zum Zitat Bransford RJ, Russo A, Freeborn M, Nuyen Q, Lee MJ, Chapman J, Bellabarba C (2009) Posterior C2 instrumentation: accuracy and risks associated with four techniques. In: 16th international meeting on advanced spine technologies, Vienna Bransford RJ, Russo A, Freeborn M, Nuyen Q, Lee MJ, Chapman J, Bellabarba C (2009) Posterior C2 instrumentation: accuracy and risks associated with four techniques. In: 16th international meeting on advanced spine technologies, Vienna
10.
Zurück zum Zitat Brazenor GA (2007) Comparison of multisegment anterior cervical fixation using bone graft versus a titanium rod and buttress prosthesis. Spine 32:63–71PubMedCrossRef Brazenor GA (2007) Comparison of multisegment anterior cervical fixation using bone graft versus a titanium rod and buttress prosthesis. Spine 32:63–71PubMedCrossRef
11.
Zurück zum Zitat Brodke DS, Klimo P, bachus KN, Braun JT, Dailey AT (2006) Anterior cervical fixation: analysis of load-sharing and stability with use of static and dynamic plates. J Bone Joint Surg 88-A:1566–1573CrossRef Brodke DS, Klimo P, bachus KN, Braun JT, Dailey AT (2006) Anterior cervical fixation: analysis of load-sharing and stability with use of static and dynamic plates. J Bone Joint Surg 88-A:1566–1573CrossRef
12.
Zurück zum Zitat Cha SH, Kim C, Choi BK, Kim HJ, Baek SY (2007) C-arm assessment of cervical pedicle screw-coaxial fluoroscopy and oblique view. Eur Spine J 32:1721–1727 Cha SH, Kim C, Choi BK, Kim HJ, Baek SY (2007) C-arm assessment of cervical pedicle screw-coaxial fluoroscopy and oblique view. Eur Spine J 32:1721–1727
13.
Zurück zum Zitat Cheng BC, Hafez MA, Cunningham B, Hassan S, Welch WC (2008) Biomechanical evaluation of occipitocervicothoracic fusion: impact of partial or sequential fixation. Spine J 8:821–826PubMedCrossRef Cheng BC, Hafez MA, Cunningham B, Hassan S, Welch WC (2008) Biomechanical evaluation of occipitocervicothoracic fusion: impact of partial or sequential fixation. Spine J 8:821–826PubMedCrossRef
14.
Zurück zum Zitat Dahdaleh NS, Nakamura S, Torner JC, Lim TH, Hitchon PW (2009) Biomechanical rigidity of cadaveric cervical spine with posterior versus combined posterior and anterior instrumentation. J Neurosurg Spine 10:133–138PubMedCrossRef Dahdaleh NS, Nakamura S, Torner JC, Lim TH, Hitchon PW (2009) Biomechanical rigidity of cadaveric cervical spine with posterior versus combined posterior and anterior instrumentation. J Neurosurg Spine 10:133–138PubMedCrossRef
15.
Zurück zum Zitat Dailey A, Fassett D, Finn M, Bacchus K, Brodke D (2008) Do dynamic cervical plates provide adequate stability in flexion distraction injuries? In: Annual meeting of the CSRS, Austin, TX Dailey A, Fassett D, Finn M, Bacchus K, Brodke D (2008) Do dynamic cervical plates provide adequate stability in flexion distraction injuries? In: Annual meeting of the CSRS, Austin, TX
16.
Zurück zum Zitat Dmitriev AE, Kuklo TR, Jr Lehman RA, Rosner MK (2007) Stabilizing potential of anterior, posterior, and circumferential fixation for multilevel cervical arthrodesis. Spine 32:E188–E196PubMedCrossRef Dmitriev AE, Kuklo TR, Jr Lehman RA, Rosner MK (2007) Stabilizing potential of anterior, posterior, and circumferential fixation for multilevel cervical arthrodesis. Spine 32:E188–E196PubMedCrossRef
17.
Zurück zum Zitat Do Koh Y, Lim TH, Won You J, Eck J, An HS (2001) A biomechanical comparison of modern anterior and posterior plate fixation of the cervical spine. Spine 26:15–21PubMedCrossRef Do Koh Y, Lim TH, Won You J, Eck J, An HS (2001) A biomechanical comparison of modern anterior and posterior plate fixation of the cervical spine. Spine 26:15–21PubMedCrossRef
18.
Zurück zum Zitat Dvorak MF, Pitzen T, Zhu Q, Gordon JD, Fisher CG, Oxland TR (2005) Anterior cervical plate fixation: a biomechanical study to evaluate the effects of plate design, endplate preparation, and bone mineral density. Spine 30:294–301PubMedCrossRef Dvorak MF, Pitzen T, Zhu Q, Gordon JD, Fisher CG, Oxland TR (2005) Anterior cervical plate fixation: a biomechanical study to evaluate the effects of plate design, endplate preparation, and bone mineral density. Spine 30:294–301PubMedCrossRef
19.
Zurück zum Zitat Hart R, Gillard J, Prem S, Shea M, Kitchel S (2005) Comparison of stiffness and failure load of two cervical spine fixation techniques in an in vitro human model. J Spinal Disord Tech 18:S115–S118PubMedCrossRef Hart R, Gillard J, Prem S, Shea M, Kitchel S (2005) Comparison of stiffness and failure load of two cervical spine fixation techniques in an in vitro human model. J Spinal Disord Tech 18:S115–S118PubMedCrossRef
20.
Zurück zum Zitat Hart RA, Tatsumi RL, Hiratzka JR, Yoo JU (2008) Perioperative complications of combined anterior and posterior cervical decompression and fusion crossing the cervico-thoracic junction. Spine 33:2887–2891PubMedCrossRef Hart RA, Tatsumi RL, Hiratzka JR, Yoo JU (2008) Perioperative complications of combined anterior and posterior cervical decompression and fusion crossing the cervico-thoracic junction. Spine 33:2887–2891PubMedCrossRef
21.
Zurück zum Zitat Hasegawa K, Hirano T, Shimoda H, Homma T, Morita O (2008) Indications for cervical pedicle screw instrumentation in nontraumatic lesions. Spine 33:2284–2289PubMedCrossRef Hasegawa K, Hirano T, Shimoda H, Homma T, Morita O (2008) Indications for cervical pedicle screw instrumentation in nontraumatic lesions. Spine 33:2284–2289PubMedCrossRef
22.
Zurück zum Zitat Hostin RA, Wu C, Perra JH, Polly DW, Akesen B, Wroblewski M (2008) A biomechanical evaluation of three revision screw strategies for failed lateral mass fixation. Spine 33:2415–2421PubMedCrossRef Hostin RA, Wu C, Perra JH, Polly DW, Akesen B, Wroblewski M (2008) A biomechanical evaluation of three revision screw strategies for failed lateral mass fixation. Spine 33:2415–2421PubMedCrossRef
23.
Zurück zum Zitat Ianuzzi A, Zambrano I, Tataria J, Ameerally A, Agulnick M, Little Goodwin JSL, Stephen M, Khalsa PS (2006) Biomechanical evaluation of surgical constructs for stabilization of cervical teardrop fractures. Spine J 6:514–523PubMedCrossRef Ianuzzi A, Zambrano I, Tataria J, Ameerally A, Agulnick M, Little Goodwin JSL, Stephen M, Khalsa PS (2006) Biomechanical evaluation of surgical constructs for stabilization of cervical teardrop fractures. Spine J 6:514–523PubMedCrossRef
24.
Zurück zum Zitat Isomi T, Panjabi MM, Wang JL, Vaccaro AR, Garfin SR, Patel T (1999) Stabilizing potential of anterior cervical plates in multilevel corpectomies. Spine 24:2219–2223PubMedCrossRef Isomi T, Panjabi MM, Wang JL, Vaccaro AR, Garfin SR, Patel T (1999) Stabilizing potential of anterior cervical plates in multilevel corpectomies. Spine 24:2219–2223PubMedCrossRef
25.
Zurück zum Zitat Ito Y, Sugimoto Y, Tomioka M, Hasegawa Y, Nakago K, Yagata Y (2008) Clinical accuracy of 3D fluoroscopy-assisted cervical pedicle screw insertion. J Neurosurg Spine 9:450–453PubMedCrossRef Ito Y, Sugimoto Y, Tomioka M, Hasegawa Y, Nakago K, Yagata Y (2008) Clinical accuracy of 3D fluoroscopy-assisted cervical pedicle screw insertion. J Neurosurg Spine 9:450–453PubMedCrossRef
26.
Zurück zum Zitat Johnston LT, Karaikovic EE, Lautenschlager EP, Marcu D (2006) Cervical pedicle screws vs. lateral mass screws: uniplanar fatigue analysis and residual pullout strengths. Spine J 6:667–672PubMedCrossRef Johnston LT, Karaikovic EE, Lautenschlager EP, Marcu D (2006) Cervical pedicle screws vs. lateral mass screws: uniplanar fatigue analysis and residual pullout strengths. Spine J 6:667–672PubMedCrossRef
27.
Zurück zum Zitat Jones EL, Heller JG, Silcox DH, Hutton WC (1997) Cervical pedicle screws versus lateral mass screws: anatomic feasibility and biomechanical comparison. Spine 22:977–982PubMedCrossRef Jones EL, Heller JG, Silcox DH, Hutton WC (1997) Cervical pedicle screws versus lateral mass screws: anatomic feasibility and biomechanical comparison. Spine 22:977–982PubMedCrossRef
28.
Zurück zum Zitat Kast E, Mohr K, Richter HP, Börm W (2006) Complications of transpedicular screw fixation in the cervical spine. Eur Spine J 15:327–334PubMedCrossRef Kast E, Mohr K, Richter HP, Börm W (2006) Complications of transpedicular screw fixation in the cervical spine. Eur Spine J 15:327–334PubMedCrossRef
29.
Zurück zum Zitat Koller H, Acosta F, Tauber M, Fox M, Martin H, Forstner R, Augat P, Penzkofer R, Pirich C, Kässmann H, Resch H, Hitzl W (2008) Cervical anterior transpedicular screw fixation (ATPS)—Part II. Accuracy of manual insertion and pull-out strength of ATPS. Eur Spine J 17:539–555PubMedCrossRef Koller H, Acosta F, Tauber M, Fox M, Martin H, Forstner R, Augat P, Penzkofer R, Pirich C, Kässmann H, Resch H, Hitzl W (2008) Cervical anterior transpedicular screw fixation (ATPS)—Part II. Accuracy of manual insertion and pull-out strength of ATPS. Eur Spine J 17:539–555PubMedCrossRef
30.
Zurück zum Zitat Koller H, Hempfing A, Acosta F, Fox M, Scheiter A, Tauber M, Holz U, Resch H, Hitzl W (2008) Cervical anterior transpedicular screw fixation. Part I: Study on morphological feasibility, indications, and technical prerequisites. Eur Spine J 17:523–538PubMedCrossRef Koller H, Hempfing A, Acosta F, Fox M, Scheiter A, Tauber M, Holz U, Resch H, Hitzl W (2008) Cervical anterior transpedicular screw fixation. Part I: Study on morphological feasibility, indications, and technical prerequisites. Eur Spine J 17:523–538PubMedCrossRef
31.
Zurück zum Zitat Koller H, Hempfing A, Ferraris L, Meier O, Metz-Stavenhagen P (2006) 4- and 5-level anterior fusions of the cervical spine: review of literature and clinical results. Eur Spine J 16:2055–2071CrossRef Koller H, Hempfing A, Ferraris L, Meier O, Metz-Stavenhagen P (2006) 4- and 5-level anterior fusions of the cervical spine: review of literature and clinical results. Eur Spine J 16:2055–2071CrossRef
32.
Zurück zum Zitat Koller H, Hitzl W, Acosta F, Tauber M, Zenner J, Resch H, Yukawa Y, Meier O, Schmidt R, Mayer M (2009) In vitro study of accuracy of cervical pedicle screw insertion using an electronic conductivity device (ATPS part III). Eur Spine J 18(9):1300–1313 Koller H, Hitzl W, Acosta F, Tauber M, Zenner J, Resch H, Yukawa Y, Meier O, Schmidt R, Mayer M (2009) In vitro study of accuracy of cervical pedicle screw insertion using an electronic conductivity device (ATPS part III). Eur Spine J 18(9):1300–1313
33.
Zurück zum Zitat Kotani Y, Cunningham BW, Abumi K, McAfee PC (1994) Biomechanical analysis of cervical stabilization systems. An assessment of transpedicular screw fixation in the cervical spine. Spine 19:2529–2539PubMedCrossRef Kotani Y, Cunningham BW, Abumi K, McAfee PC (1994) Biomechanical analysis of cervical stabilization systems. An assessment of transpedicular screw fixation in the cervical spine. Spine 19:2529–2539PubMedCrossRef
34.
Zurück zum Zitat Kothe R, Rüter W, Schneider E, Linke B (2004) Biomechanical analysis of transpedicular screw fixation in the subaxial cervical spine. Spine 29:1869–1875PubMedCrossRef Kothe R, Rüter W, Schneider E, Linke B (2004) Biomechanical analysis of transpedicular screw fixation in the subaxial cervical spine. Spine 29:1869–1875PubMedCrossRef
35.
Zurück zum Zitat Kristof RA, Kiefer T, Thudium M, Ringel F, Stoffel M, Kovacs A, Mueller C-A (2009) Comparison of ventral corpectomy and plate-screw-instrumented fusion with dorsal laminectomy and rod-screw-instrumented fusion for treatment of at least two vertebral-level spondylotic cervical myelopathy. Eur Spine J 18(12):1951–1956 Kristof RA, Kiefer T, Thudium M, Ringel F, Stoffel M, Kovacs A, Mueller C-A (2009) Comparison of ventral corpectomy and plate-screw-instrumented fusion with dorsal laminectomy and rod-screw-instrumented fusion for treatment of at least two vertebral-level spondylotic cervical myelopathy. Eur Spine J 18(12):1951–1956
36.
Zurück zum Zitat Lindsey C, Deviren V, Xu Z, Yeh RF, Puttlitz CM (2009) The effects of rod countering on spinal construct fatigue strength. Spine 31:1680–1687CrossRef Lindsey C, Deviren V, Xu Z, Yeh RF, Puttlitz CM (2009) The effects of rod countering on spinal construct fatigue strength. Spine 31:1680–1687CrossRef
37.
Zurück zum Zitat Lu J, Wu X, Li Yonggang, Kong X (2007) Surgical results of anterior corpectomy in the aged patients with cervical myelopathy. Eur Spine J 17:129–135PubMedCrossRef Lu J, Wu X, Li Yonggang, Kong X (2007) Surgical results of anterior corpectomy in the aged patients with cervical myelopathy. Eur Spine J 17:129–135PubMedCrossRef
38.
Zurück zum Zitat Mummaneni PV, Dhall SS, Rodts GE, Haid RW (2008) Circumferential fusion for cervical kyphotic deformity. J Neurosurg Spine 9:515–521PubMedCrossRef Mummaneni PV, Dhall SS, Rodts GE, Haid RW (2008) Circumferential fusion for cervical kyphotic deformity. J Neurosurg Spine 9:515–521PubMedCrossRef
39.
Zurück zum Zitat O’Brien JR, Dmitriev AE, Yu W, Gelb D, Ludwig S (2009) Posterior-only stabilization of 2-column and 3-column injuries at the cervicothoracic junction. J Spinal Disord 22:340–346CrossRef O’Brien JR, Dmitriev AE, Yu W, Gelb D, Ludwig S (2009) Posterior-only stabilization of 2-column and 3-column injuries at the cervicothoracic junction. J Spinal Disord 22:340–346CrossRef
40.
Zurück zum Zitat O’Shaughnessy BA, Liu JC, Hsieh PC, Koski TR, Ganju A, Ondra SL (2008) Surgical treatment of fixed cervical kyphosis with myelopathy. Spine 33:771–778PubMedCrossRef O’Shaughnessy BA, Liu JC, Hsieh PC, Koski TR, Ganju A, Ondra SL (2008) Surgical treatment of fixed cervical kyphosis with myelopathy. Spine 33:771–778PubMedCrossRef
41.
Zurück zum Zitat Panjabi MM, Isomi T, Wang JL (1999) Loosening at the screw-vertebra junction in multilevel anterior cervical plate constructs. Spine 24:2383–2388PubMedCrossRef Panjabi MM, Isomi T, Wang JL (1999) Loosening at the screw-vertebra junction in multilevel anterior cervical plate constructs. Spine 24:2383–2388PubMedCrossRef
42.
Zurück zum Zitat Panjabi MM, Krag M, Summers D, videmann T (1985) Biomechanical time-tolerance of fresh cadaveric human spine specimens. J Orthop Res 3:292–300PubMedCrossRef Panjabi MM, Krag M, Summers D, videmann T (1985) Biomechanical time-tolerance of fresh cadaveric human spine specimens. J Orthop Res 3:292–300PubMedCrossRef
43.
Zurück zum Zitat Porter RW, Crawford NR, Chamberlain RH, Park SC, Detwiler PW, Apostolides PJ, Sonntag VKH (2003) Biomechanical analysis of multilevel cervical corpectomy and plate constructs. J Neurosurg 99:98–103PubMed Porter RW, Crawford NR, Chamberlain RH, Park SC, Detwiler PW, Apostolides PJ, Sonntag VKH (2003) Biomechanical analysis of multilevel cervical corpectomy and plate constructs. J Neurosurg 99:98–103PubMed
44.
Zurück zum Zitat Rath SA, Moszko S, Schäffner PM, Cantone G, Braun V, Richter HP, Antoniadis G (2008) Accuracy of pedicle screw insertion in the cervical spine for internal fixation using frameless stereotactic guidance. J Neurosurg Spine 8:237–245PubMedCrossRef Rath SA, Moszko S, Schäffner PM, Cantone G, Braun V, Richter HP, Antoniadis G (2008) Accuracy of pedicle screw insertion in the cervical spine for internal fixation using frameless stereotactic guidance. J Neurosurg Spine 8:237–245PubMedCrossRef
45.
Zurück zum Zitat Ratliff J, Cooper PR (2003) Cervical laminoplasty: a critical review. J Neurosurg 98:230–238PubMed Ratliff J, Cooper PR (2003) Cervical laminoplasty: a critical review. J Neurosurg 98:230–238PubMed
46.
Zurück zum Zitat Sakamoto T, Neo M, Nakamura T (2004) Transpedicular screw placement evaluated by axial computed tomography of the cervical pedicle. Spine 22:2510–2514CrossRef Sakamoto T, Neo M, Nakamura T (2004) Transpedicular screw placement evaluated by axial computed tomography of the cervical pedicle. Spine 22:2510–2514CrossRef
47.
Zurück zum Zitat Sakaura H, Hosono N, Mukai Y, Ishii T, Iwasaki M, Yoshikawa H (2005) Long-term outcome of laminoplasty for cervical myelopathy due to disc herniation: a comparative study of laminoplasty and anterior spinal fusion. Spine 30:756–759PubMedCrossRef Sakaura H, Hosono N, Mukai Y, Ishii T, Iwasaki M, Yoshikawa H (2005) Long-term outcome of laminoplasty for cervical myelopathy due to disc herniation: a comparative study of laminoplasty and anterior spinal fusion. Spine 30:756–759PubMedCrossRef
48.
Zurück zum Zitat Sandler AJ, Dvorak J, Humke T, Grob D, Daniels W (1996) The effectiveness of various cervical orthoses. Spine 21:1624–1629PubMedCrossRef Sandler AJ, Dvorak J, Humke T, Grob D, Daniels W (1996) The effectiveness of various cervical orthoses. Spine 21:1624–1629PubMedCrossRef
49.
Zurück zum Zitat Schlenk RP, Stewart T, Benzel EC (2003) The biomechanics of iatrogenic spinal destabilization and implant failure. Neurosurg Focus 15(3):E2 Schlenk RP, Stewart T, Benzel EC (2003) The biomechanics of iatrogenic spinal destabilization and implant failure. Neurosurg Focus 15(3):E2
50.
Zurück zum Zitat Schmidt R, Wilke HJ, Claes L, Puhl W, Richter M (2005) Effect of constrained posterior screw and rod systems for primary stability: biomechanical in vitro comparison of various instrumentations in a single-level corpectomy model. Eur Spine J 14:372–380PubMedCrossRef Schmidt R, Wilke HJ, Claes L, Puhl W, Richter M (2005) Effect of constrained posterior screw and rod systems for primary stability: biomechanical in vitro comparison of various instrumentations in a single-level corpectomy model. Eur Spine J 14:372–380PubMedCrossRef
51.
Zurück zum Zitat Schmidt R, Wilke HJ, Claes L, Puhl W, Richter M (2003) Pedicle screws enhance primary stability in multilevel cervical corpectomies: biomechanical in vitro comparison of different implants including constrained and nonconstrained posterior instruments. Spine 16:1821–1828CrossRef Schmidt R, Wilke HJ, Claes L, Puhl W, Richter M (2003) Pedicle screws enhance primary stability in multilevel cervical corpectomies: biomechanical in vitro comparison of different implants including constrained and nonconstrained posterior instruments. Spine 16:1821–1828CrossRef
52.
Zurück zum Zitat Schneider AM, Hipp JA, Nguyen L, Reitman CA (2007) Reduction in head and intervertebral motion provided by 7 contemporary cervical orthoses in 45 individuals. Spine 32:E-1–E-6CrossRef Schneider AM, Hipp JA, Nguyen L, Reitman CA (2007) Reduction in head and intervertebral motion provided by 7 contemporary cervical orthoses in 45 individuals. Spine 32:E-1–E-6CrossRef
53.
Zurück zum Zitat Sembrano JN, Mehbod AA, Garvey TA, Denis F, Perra JH, Schwender JD, Transfeldt EE, Winter RB, Wroblewski M (2009) A concomitant posterior approach improves fusion rates but not overall reoperation rates in multilevel cervical fusion for spondylosis. J Spinal Disord Tech 22:162–169PubMedCrossRef Sembrano JN, Mehbod AA, Garvey TA, Denis F, Perra JH, Schwender JD, Transfeldt EE, Winter RB, Wroblewski M (2009) A concomitant posterior approach improves fusion rates but not overall reoperation rates in multilevel cervical fusion for spondylosis. J Spinal Disord Tech 22:162–169PubMedCrossRef
54.
Zurück zum Zitat Singh K, Vaccaro AR, Kim J, Lorenz EP, Lim TH, An HS (2003) Biomechanical comparison of cervical spine reconstructive techniques after a multilevel corpectomy of the cervical spine. Spine 28:2352–2357, 2358 Singh K, Vaccaro AR, Kim J, Lorenz EP, Lim TH, An HS (2003) Biomechanical comparison of cervical spine reconstructive techniques after a multilevel corpectomy of the cervical spine. Spine 28:2352–2357, 2358
55.
Zurück zum Zitat Steinmetz MP, Stewart TJ, Kager CD, Benzel EC, Vaccaro AR (2007) Cervical deformity correction. Neurosurg 60(Suppl):S90–S97CrossRef Steinmetz MP, Stewart TJ, Kager CD, Benzel EC, Vaccaro AR (2007) Cervical deformity correction. Neurosurg 60(Suppl):S90–S97CrossRef
56.
Zurück zum Zitat Suda K, Kajino T, Moridaira H, Limoto S, Taneichi H (2008) How to avoid fatal vascular complications caused by pedicle screws—surgical strategy for safe screw placement. Spineweek, Geneva Suda K, Kajino T, Moridaira H, Limoto S, Taneichi H (2008) How to avoid fatal vascular complications caused by pedicle screws—surgical strategy for safe screw placement. Spineweek, Geneva
57.
Zurück zum Zitat Wei-bing X, Wun-Jer S, Lv Gang, Yue Z, Ming-xi J, Lian-shun J (2009) Reconstructive techniques study after anterior decompression of multilevel cervical spondylotic myelopathy. J Spinal Disord Tech 22:511–515PubMedCrossRef Wei-bing X, Wun-Jer S, Lv Gang, Yue Z, Ming-xi J, Lian-shun J (2009) Reconstructive techniques study after anterior decompression of multilevel cervical spondylotic myelopathy. J Spinal Disord Tech 22:511–515PubMedCrossRef
58.
Zurück zum Zitat Wilke HJ, Claes L, Schmitt H, Wolf S (1994) A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 3:91–97PubMedCrossRef Wilke HJ, Claes L, Schmitt H, Wolf S (1994) A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 3:91–97PubMedCrossRef
59.
Zurück zum Zitat Wilke HJ, Jungkunz B, Wenger K, Claes LE (1998) Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular-deformation rate, and moisture condition. Anat Rec 251:15–19PubMedCrossRef Wilke HJ, Jungkunz B, Wenger K, Claes LE (1998) Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular-deformation rate, and moisture condition. Anat Rec 251:15–19PubMedCrossRef
60.
Zurück zum Zitat Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154PubMedCrossRef Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154PubMedCrossRef
61.
Zurück zum Zitat Wolfa CE (2006) Anatomical, biomechanical, and practical considerations in posterior occipitocervical instrumentation. Spine J 6:225S–232SCrossRef Wolfa CE (2006) Anatomical, biomechanical, and practical considerations in posterior occipitocervical instrumentation. Spine J 6:225S–232SCrossRef
62.
Zurück zum Zitat Yukawa Y, Kato F, Ito K, Horie Y, Hida T, Nakashima H, Machino M (2008) Placement and complications of cervical pedicle screws in 144 cervical trauma patients using pedicle axis view techniques by fluoroscope. Eur Spine J 18:1293–1299CrossRef Yukawa Y, Kato F, Ito K, Horie Y, Hida T, Nakashima H, Machino M (2008) Placement and complications of cervical pedicle screws in 144 cervical trauma patients using pedicle axis view techniques by fluoroscope. Eur Spine J 18:1293–1299CrossRef
63.
Zurück zum Zitat Yukawa Y, Kato F, Ito K, Nakashima H, Machino M (2009) Anterior cervical pedicle screw and plate fixation using fluoroscope-assisted pedicle axis view imaging: a preliminary report of a new cervical reconstruction technique. Eur Spine J 18:911–916PubMedCrossRef Yukawa Y, Kato F, Ito K, Nakashima H, Machino M (2009) Anterior cervical pedicle screw and plate fixation using fluoroscope-assisted pedicle axis view imaging: a preliminary report of a new cervical reconstruction technique. Eur Spine J 18:911–916PubMedCrossRef
Metadaten
Titel
The stabilizing potential of anterior, posterior and combined techniques for the reconstruction of a 2-level cervical corpectomy model: biomechanical study and first results of ATPS prototyping
verfasst von
Heiko Koller
Rene Schmidt
Michael Mayer
Wolfgang Hitzl
Juliane Zenner
Stefan Middendorf
Nicolaus Gräf
H. Resch
Hans-Joachim Willke
Publikationsdatum
01.12.2010
Verlag
Springer-Verlag
Erschienen in
European Spine Journal / Ausgabe 12/2010
Print ISSN: 0940-6719
Elektronische ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-010-1503-x

Weitere Artikel der Ausgabe 12/2010

European Spine Journal 12/2010 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.