Skip to main content
Erschienen in: European Spine Journal 1/2013

01.03.2013 | Original Article

A 3D motion analysis study comparing the effectiveness of cervical spine orthoses at restricting spinal motion through physiological ranges

verfasst von: Nicholas Rhys Evans, Georgina Hooper, Rachel Edwards, Gemma Whatling, Valerie Sparkes, Cathy Holt, Sashin Ahuja

Erschienen in: European Spine Journal | Sonderheft 1/2013

Einloggen, um Zugang zu erhalten

Abstract

Objective

To compare the effectiveness of the Aspen, Aspen Vista, Philadelphia, Miami-J and Miami-J Advanced collars at restricting cervical spine movement in the sagittal, coronal and axial planes.

Methods

Nineteen healthy volunteers (12 female, 7 male) were recruited to the study. Collars were fitted by an approved physiotherapist. Eight ProReflex (Qualisys, Sweden) infrared cameras were used to track the movement of retro-reflective marker clusters placed in predetermined positions on the head and trunk. 3D kinematic data were collected during forward flexion, extension, lateral bending and axial rotation from uncollared to collared subjects. The physiological range of motion in the three planes was analysed using the Qualisys Track Manager System.

Results

The Aspen and Philadelphia were significantly more effective at restricting flexion/extension than the Vista (p < 0.001), Miami-J (p < 0.001 and p < 0.01) and Miami-J Advanced (p < 0.01 and p < 0.05). The Aspen was significantly more effective at restricting rotation than the Vista (p < 0.001) and the Miami-J (p < 0.05). The Vista was significantly the least effective collar at restricting lateral bending (p < 0.001).

Conclusion

Our motion analysis study found the Aspen collar to be superior to the other collars when measuring restriction of movement of the cervical spine in all planes, particularly the sagittal and transverse planes, while the Aspen Vista was the least effective collar.
Literatur
1.
Zurück zum Zitat Quinlan JF, Mullett H, Stapleton R, FitzPatrick D, McCormack D (2006) The use of the Zebris motion analysis system for measuring cervical spine movements in vivo. Proc Inst Mech Eng H 220:889–896PubMedCrossRef Quinlan JF, Mullett H, Stapleton R, FitzPatrick D, McCormack D (2006) The use of the Zebris motion analysis system for measuring cervical spine movements in vivo. Proc Inst Mech Eng H 220:889–896PubMedCrossRef
3.
Zurück zum Zitat Ordway NR, Seymour R, Donelson RG, Hojnowski L, Lee E, Edwards WT (1997) Cervical sagittal range-of-motion analysis using three methods. Cervical range-of-motion device, 3space, and radiography. Spine 22:501–508PubMedCrossRef Ordway NR, Seymour R, Donelson RG, Hojnowski L, Lee E, Edwards WT (1997) Cervical sagittal range-of-motion analysis using three methods. Cervical range-of-motion device, 3space, and radiography. Spine 22:501–508PubMedCrossRef
4.
Zurück zum Zitat Askins V, Eismont FJ (1997) Efficacy of five cervical orthoses in restricting cervical motion: a comparison study. Spine 22:1193–1198PubMedCrossRef Askins V, Eismont FJ (1997) Efficacy of five cervical orthoses in restricting cervical motion: a comparison study. Spine 22:1193–1198PubMedCrossRef
5.
Zurück zum Zitat Gavin TM, Carandang G, Havey R, Flanagan P, Ghanayem A, Patwardhan AG (2003) Biomechanical analysis of cervical orthoses in flexion and extension: a comparison of cervical collars and cervical thoracic orthoses. J Rehabil Res Dev 40:527–537PubMedCrossRef Gavin TM, Carandang G, Havey R, Flanagan P, Ghanayem A, Patwardhan AG (2003) Biomechanical analysis of cervical orthoses in flexion and extension: a comparison of cervical collars and cervical thoracic orthoses. J Rehabil Res Dev 40:527–537PubMedCrossRef
7.
Zurück zum Zitat Johnson RM, Hart DL, Simmons EF, Ramsby GR, Southwick WO (1977) Cervical orthoses. A study comparing their effectiveness in restricting cervical motion in normal subjects. J Bone Joint Surg Am 59:332–339PubMed Johnson RM, Hart DL, Simmons EF, Ramsby GR, Southwick WO (1977) Cervical orthoses. A study comparing their effectiveness in restricting cervical motion in normal subjects. J Bone Joint Surg Am 59:332–339PubMed
8.
Zurück zum Zitat Dvorak J, Panjabi MM, Grob D, Novotny JE, Antinnes JA (1993) Clinical validation of functional flexion/extension radiographs of the cervical spine. Spine 18:120–127PubMedCrossRef Dvorak J, Panjabi MM, Grob D, Novotny JE, Antinnes JA (1993) Clinical validation of functional flexion/extension radiographs of the cervical spine. Spine 18:120–127PubMedCrossRef
9.
Zurück zum Zitat Hartman JT, Palumbo F, Hill BJ (1975) Cineradiography of the braced normal cervical spine. A comparative study of five commonly used cervical orthoses. Clin Orthop Relat Res 109:97–102PubMedCrossRef Hartman JT, Palumbo F, Hill BJ (1975) Cineradiography of the braced normal cervical spine. A comparative study of five commonly used cervical orthoses. Clin Orthop Relat Res 109:97–102PubMedCrossRef
10.
Zurück zum Zitat Hino H, Abumi K, Kanayama M, Kaneda K (1999) Dynamic motion analysis of normal and unstable cervical spines using cineradiography: an in vivo study. Spine 24:163–168PubMedCrossRef Hino H, Abumi K, Kanayama M, Kaneda K (1999) Dynamic motion analysis of normal and unstable cervical spines using cineradiography: an in vivo study. Spine 24:163–168PubMedCrossRef
11.
Zurück zum Zitat Hsu WH, Chen YL, Lui TN, Chen TY, Hsu YH, Lin CL, Ming-Lun T (2011) Comparison of the kinematic features between the in vivo active and passive flexion–extension of the subaxial cervical spine and their biomechanical implications. Spine 36:630–638. doi:10.1097/BRS.0b013e3181da79af PubMedCrossRef Hsu WH, Chen YL, Lui TN, Chen TY, Hsu YH, Lin CL, Ming-Lun T (2011) Comparison of the kinematic features between the in vivo active and passive flexion–extension of the subaxial cervical spine and their biomechanical implications. Spine 36:630–638. doi:10.​1097/​BRS.​0b013e3181da79af​ PubMedCrossRef
12.
Zurück zum Zitat Lim TH, Eck JC, An HS, McGrady LM, Harris GF, Haughton VM (1997) A noninvasive, three-dimensional spinal motion analysis method. Spine 22:1996–2000PubMedCrossRef Lim TH, Eck JC, An HS, McGrady LM, Harris GF, Haughton VM (1997) A noninvasive, three-dimensional spinal motion analysis method. Spine 22:1996–2000PubMedCrossRef
13.
Zurück zum Zitat Karhu JO, Parkkola RK, Komu ME, Kormano MJ, Koskinen SK (1999) Kinematic magnetic resonance imaging of the upper cervical spine using a novel positioning device. Spine 24:2046–2056PubMedCrossRef Karhu JO, Parkkola RK, Komu ME, Kormano MJ, Koskinen SK (1999) Kinematic magnetic resonance imaging of the upper cervical spine using a novel positioning device. Spine 24:2046–2056PubMedCrossRef
14.
Zurück zum Zitat Manix T, Gunderson MR, Garth GC (1995) Comparison of prehospital cervical immobilization devices using video and electromyography. Prehosp Disaster Med 10:232–237 discussion 237-238PubMed Manix T, Gunderson MR, Garth GC (1995) Comparison of prehospital cervical immobilization devices using video and electromyography. Prehosp Disaster Med 10:232–237 discussion 237-238PubMed
15.
Zurück zum Zitat Mayer T, Brady S, Bovasso E, Pope P, Gatchel RJ (1993) Noninvasive measurement of cervical tri-planar motion in normal subjects. Spine 18:2191–2195PubMedCrossRef Mayer T, Brady S, Bovasso E, Pope P, Gatchel RJ (1993) Noninvasive measurement of cervical tri-planar motion in normal subjects. Spine 18:2191–2195PubMedCrossRef
16.
Zurück zum Zitat Panjabi MM, Crisco JJ, Vasavada A, Oda T, Cholewicki J, Nibu K, Shin E (2001) Mechanical properties of the human cervical spine as shown by three-dimensional load–displacement curves. Spine 26:2692–2700PubMedCrossRef Panjabi MM, Crisco JJ, Vasavada A, Oda T, Cholewicki J, Nibu K, Shin E (2001) Mechanical properties of the human cervical spine as shown by three-dimensional load–displacement curves. Spine 26:2692–2700PubMedCrossRef
17.
Zurück zum Zitat Feipel V, Rondelet B, Le Pallec J, Rooze M (1999) Normal global motion of the cervical spine: an electrogoniometric study. Clin Biomech 14:462–470CrossRef Feipel V, Rondelet B, Le Pallec J, Rooze M (1999) Normal global motion of the cervical spine: an electrogoniometric study. Clin Biomech 14:462–470CrossRef
20.
Zurück zum Zitat Gracovetsky S, Newman N, Pawlowsky M, Lanzo V, Davey B, Robinson L (1995) A database for estimating normal spinal motion derived from noninvasive measurements. Spine 20:1036–1046PubMedCrossRef Gracovetsky S, Newman N, Pawlowsky M, Lanzo V, Davey B, Robinson L (1995) A database for estimating normal spinal motion derived from noninvasive measurements. Spine 20:1036–1046PubMedCrossRef
21.
Zurück zum Zitat Dvorak J, Antinnes JA, Panjabi M, Loustalot D, Bonomo M (1992) Age and gender related normal motion of the cervical spine. Spine 17:393–398CrossRef Dvorak J, Antinnes JA, Panjabi M, Loustalot D, Bonomo M (1992) Age and gender related normal motion of the cervical spine. Spine 17:393–398CrossRef
22.
Zurück zum Zitat Castro WH, Sautmann A, Schilgen M, Sautmann M (2000) Noninvasive three-dimensional analysis of cervical spine motion in normal subjects in relation to age and sex: an experimental examination. Spine 25:443–449PubMedCrossRef Castro WH, Sautmann A, Schilgen M, Sautmann M (2000) Noninvasive three-dimensional analysis of cervical spine motion in normal subjects in relation to age and sex: an experimental examination. Spine 25:443–449PubMedCrossRef
Metadaten
Titel
A 3D motion analysis study comparing the effectiveness of cervical spine orthoses at restricting spinal motion through physiological ranges
verfasst von
Nicholas Rhys Evans
Georgina Hooper
Rachel Edwards
Gemma Whatling
Valerie Sparkes
Cathy Holt
Sashin Ahuja
Publikationsdatum
01.03.2013
Verlag
Springer-Verlag
Erschienen in
European Spine Journal / Ausgabe Sonderheft 1/2013
Print ISSN: 0940-6719
Elektronische ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-012-2641-0

Weitere Artikel der Sonderheft 1/2013

European Spine Journal 1/2013 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.