Skip to main content

Advertisement

Log in

Sagittal balance and idiopathic scoliosis: does final sagittal alignment influence outcomes, degeneration rate or failure rate?

  • Review
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Introduction

In the last decade, spine surgeons have been impacted by the “sagittal plane analysis revolution”. Significant correlations have been found in adult spinal deformity (ASD) between sagittal lumbo-pelvic parameters and functional outcomes, but most of them do not apply in adolescent idiopathic scoliosis (AIS). Meanwhile, instrumentation and reduction strategies have considerably evolved. This paper aims to describe the preoperative sagittal alignment in AIS, and to report literature evidence regarding the influence of postoperative sagittal balance on complication rates, low back pain incidence and disc degeneration.

Methods

A bibliographic search in Medline and Google database from 1984 to May 2017 was performed. The keywords included ‘adolescent idiopathic scoliosis’, ‘adult scoliosis’, ‘sagittal alignment’, ‘proximal junctional kyphosis’, ‘distal junctional kyphosis’, ‘outcomes’, ‘low back pain’ and ‘complication’, used individually or in combination.

Results

Algorithms of sagittal balance analysis and treatment decision have been reported in ASD, but the clinical situation is very different in children. Sagittal alignment greatly varies in AIS among the various Lenke types. Most patients are clinically balanced before surgery, but the spinal harmony is altered, with overgrowth of the anterior column and global sagittal flattening (undersestimated in 2D). The exact role of pelvic incidence and whether or not patients also use pelvic compensation to maintain balance still require further clarification. The incidence of radiological junctional failures remains highly variable, depending on definitions, cohort size and follow-up. Preoperative hyperkyphosis seems to be a consistent and relevant risk factor. Current literature does not support the recent trend to save motion segments (selective fusion), and no significant association was found between the distal level of fusion and the incidence of low back pain. Postoperative sagittal alignment seems to be more important than LIV selection to avoid disc degeneration at mid-term follow-up.

Conclusion

It is clear now that sagittal alignment plays a major role in clinical outcomes and should not be neglected in AIS. Seven key guidelines that should be considered for each patient before surgery are reported (Table 2). Personalized planning using 3D technology is gaining popularity and might help in the future reducing complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Danielsson AJ (2007) What impact does spinal deformity correction for adolescent idiopathic scoliosis make on quality of life? Spine (Phila Pa 1976) 1 32(19 Suppl):S101–S108

    Article  Google Scholar 

  2. Rushton PR, Grevitt MP (2013) Comparison of untreated adolescent idiopathic scoliosis with normal controls: a review and statistical analysis of the literature. Spine (Phila Pa 1976) 20 38(9):778–785

    Article  Google Scholar 

  3. Yaszay B, Bastrom TP, Bartley CE, Parent S, Newton PO (2017) The effects of the three-dimensional deformity of adolescent idiopathic scoliosis on pulmonary function. Eur Spine J 26(6):1658–1664

  4. Ward WT, Friel NA, Kenkre TS, Brooks MM, Londino JA, Roach JW (2017) SRS-22r scores in nonoperated adolescent idiopathic scoliosis patients with curves greater than forty degrees. Spine (Phila Pa 1976) 42(16):1233–1240

  5. Rushton PR, Grevitt MP (2013) What is the effect of surgery on the quality of life of the adolescent with adolescent idiopathic scoliosis? A review and statistical analysis of the literature. Spine (Phila Pa 1976) 20 38(9):786–794

    Article  Google Scholar 

  6. Guigui P, Levassor N, Rillardon L, Wodecki P, Cardinne L (2003) Physiological value of pelvic and spinal parameters of sagital balance: analysis of 250 healthy volunteers. Rev Chir Orthopédique Réparatrice Appar Mot. 89(6):496–506

    CAS  Google Scholar 

  7. Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine 30(3):346–353

    Article  PubMed  Google Scholar 

  8. Lafage R, Challier V, Liabaud B, Vira S, Ferrero E, Diebo BG, Lui S, Vital JM, Mazda K, Protopsaltis TS, Errico TJ, Schwab FJ, Lafage V (2015) Natural head posture in the setting of sagittal spinal deformity: validation of chin-brow vertical angle, slope of line of sight, and McGregor’s slope with health-related quality of life. Neurosurgery 79(1):108–115

    Article  Google Scholar 

  9. Legaye J, Duval-Beaupère G, Hecquet J, Marty C (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7(2):99–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lamartina C, Berjano P (2014) Classification of sagittal imbalance based on spinal alignment and compensatory mechanisms. Eur Spine J 23(6):1177–1189

    Article  PubMed  Google Scholar 

  11. Le Huec JC, Charosky S, Barrey C, Rigal J, Aunoble S (2011) Sagittal imbalance cascade for simple degenerative spine and consequences: algorithm of decision for appropriate treatment. Eur Spine J 20(Suppl 5):699–703

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pankowski R, Roclawski M, Ceynowa M, Mikulicz M, Mazurek T, Kloc W (2016) Direct vertebral rotation versus single concave rod rotation: low-dose intraoperative computed tomography evaluation of spine derotation in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 41:864–871

    Article  Google Scholar 

  13. Suk SI, Kim JH, Kim SS, Lim DJ (2012) Pedicle screw instrumentation in adolescent idiopathic scoliosis (AIS). Eur Spine J 21(1):13–22

    Article  PubMed  Google Scholar 

  14. Lowenstein JE, Matsumoto H, Vitale MG, Weidenbaum M, Gomez JA, Lee FY, Hyman JE, Roye DP Jr (2007) Coronal and sagittal plane correction in adolescent idiopathic scoliosis: a comparison between all pedicle screw versus hybrid thoracic hook lumbar screw constructs. Spine (Phila Pa 1976) 32:448–452

    Article  Google Scholar 

  15. Hwang SW, Samdani AF, Tantorski M, Cahill P, Nydick J, Fine A, Betz RR, Antonacci MD (2011) Cervical sagittal plane decompensation after surgery for adolescent idiopathic scoliosis: an effect imparted by postoperative thoracic hypokyphosis. J Neurosurg Spine 15:491–496

    Article  PubMed  Google Scholar 

  16. Martin CT, Pugely AJ, Gao Y, Mendoza-Lattes SA, Ilgenfritz RM, Callaghan JJ, Weinstein SL (2014) Increasing hospital charges for adolescent idiopathic scoliosis in the United States. Spine (Phila Pa 1976) 39:1676–1682

    Article  Google Scholar 

  17. Newton PO, Yaszay B, Upasani VV, Pawelek JB, Bastrom TP, Lenke LG, Lowe T, Crawford A, Betz R, Lonner B, Harms Study Group (2010) Preservation of thoracic kyphosis is critical to maintain lumbar lordosis in the surgical treatment of adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 35:1365–1370

    Article  Google Scholar 

  18. Watanabe K, Nakamura T, Iwanami A, Hosogane N, Tsuji T, Ishii K, Nakamura M, Toyama Y, Chiba K, Matsumoto M (2012) Vertebral derotation in adolescent idiopathic scoliosis causes hypokyphosis of the thoracic spine. BMC Musculoskelet Disord 12(13):99

    Article  Google Scholar 

  19. Helenius I, Remes V, Yrjönen T, Ylikoski M, Schlenzka D, Helenius M, Poussa M (2003) Harrington and Cotrel-Dubousset instrumentation in adolescent idiopathic scoliosis. Long-term functional and radiographic outcomes. J Bone Jt Surg Am 12:2303–2309

    Article  Google Scholar 

  20. Lonner BS, Ren Y, Newton PO, Shah SA, Samdani AF, Shufflebarger HL, Asghar J, Sponseller P, Betz RR, Yaszay B (2017) Risk factors of proximal junctional kyphosis in adolescent idiopathic scoliosis-the pelvis and other considerations. Spine Deform 5(3):181–188

    Article  PubMed  Google Scholar 

  21. Schwab F, Patel A, Ungar B, Farcy JP, Lafage V (2010) Adult spinal deformity-postoperative standing imbalance: how much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine (Phila Pa 1976) 35(25):2224–2231

    Article  Google Scholar 

  22. Lenke LG (2005) Lenke classification system of adolescent idiopathic scoliosis: treatment recommendations. Instr Course Lect 54:537–542

    PubMed  Google Scholar 

  23. Clements DH, Marks M, Newton PO, Betz RR, Lenke L, Shufflebarger H, Harms Study Group (2011) Did the Lenke classification change scoliosis treatment? Spine (Phila Pa 1976) 36(14):1142–1145

    Article  Google Scholar 

  24. Barrey C, Roussouly P, Le Huec JC, D’Acunzi G, Perrin G (2013) Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J 22(Suppl 6):S834–S841

    Article  PubMed  Google Scholar 

  25. Roussouly P, Labelle H, Rouissi J, Bodin A (2013) Pre- and post-operative sagittal balance in idiopathic scoliosis: a comparison over the ages of two cohorts of 132 adolescents and 52 adults. Eur Spine J 22(Suppl 2):S203–S215

    Article  PubMed  Google Scholar 

  26. La Maida GA, Zottarelli L, Mineo GV, Misaggi B (2013) Sagittal balance in adolescent idiopathic scoliosis: radiographic study of spino-pelvic compensation after surgery. Eur Spine J 22(Suppl 6):S859–S867

    Article  PubMed  Google Scholar 

  27. Vidal C, Mazda K, Ilharreborde B (2016) Sagittal spino-pelvic adjustment in severe Lenke 1 hypokyphotic adolescent idiopathic scoliosis patients. Eur Spine J 25(10):3162–3169

    Article  PubMed  Google Scholar 

  28. Ries Z, Harpole B, Graves C, Gnanapragasam G, Larson N, Weintstein S, Mendoza-Lattes SA (2015) Selective thoracic fusion of Lenke I and II curves affects sagittal profiles but not sagittal or spinopelvic alignment: a case–control study. Spine (Phila Pa 1976) 40(12):926–934

    Article  Google Scholar 

  29. Newton PO, Fujimori T, Doan J, Reighard FG, Bastrom TP, Misaghi A (2015) Defining the “three-dimensional sagittal plane” in thoracic adolescent idiopathic scoliosis. J Bone Jt Surg Am 97(20):1694–1701

    Article  Google Scholar 

  30. Brink RC, Schlösser TPC, Colo D, Vavruch L, van Stralen M, Vincken KL, Malmqvist M, Kruyt MC, Tropp H, Castelein RM (2017) Anterior spinal overgrowth is the result of the scoliotic mechanism and is located in the disc. Spine (Phila Pa 1976) 42(11):818–822

    Article  Google Scholar 

  31. Ilharreborde B, Vidal C, Skalli W, Mazda K (2013) Sagittal alignment of the cervical spine in adolescent idiopathic scoliosis treated by posteromedial translation. Eur Spine J 22:330–337

    Article  PubMed  Google Scholar 

  32. Cotrel Y, Dubousset J (1984) A new technic for segmental spinal osteosynthesis using the posterior approach]. Rev Chir Orthop Reparatrice Appar Mot 70(6):489–494

    CAS  PubMed  Google Scholar 

  33. Glassman SD, Bridwell K, Dimar JR, Horton W, Berven S, Schwab F (2005) The impact of positive sagittal balance in adult spinal deformity. Spine (Phila Pa 1976) 30(18):2024–2029

    Article  Google Scholar 

  34. Lamartina C, Berjano P, Petruzzi M, Sinigaglia A, Casero G, Cecchinato R, Damilano M, Bassani R (2012) Criteria to restore the sagittal balance in deformity and degenerative spondylolisthesis. Eur Spine J 21(Suppl 1):S27–S31

    Article  PubMed  Google Scholar 

  35. Lowe TG, Lenke L, Betz R, Newton P, Clements D, Haher T, Crawford A, Letko L, Wilson LA (2006) Distal junctional kyphosis of adolescent idiopathic thoracic curves following anterior or posterior instrumented fusion: incidence, risk factors, and prevention. Spine (Phila Pa 1976) 31(3):299–302

    Article  Google Scholar 

  36. Kim YJ, Lenke LG, Bridwell KH, Kim J, Cho SK, Cheh G, Yoon J (2007) Proximal junctional kyphosis in adolescent idiopathic scoliosis after 3 different types of posterior segmental spinal instrumentation and fusions: incidence and risk factor analysis of 410 cases. Spine (Phila Pa 1976) 32(24):2731–2738

    Article  Google Scholar 

  37. Hollenbeck SM, Glattes RC, Asher MA, Lai SM, Burton DC (2008) The prevalence of increased proximal junctional flexion following posterior instrumentation and arthrodesis for adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 33(15):1675–1681

    Article  Google Scholar 

  38. Helgeson MD, Shah SA, Newton PO, Clements DH 3rd, Betz RR, Marks MC, Bastrom T, Harms Study Group (2010) Evaluation of proximal junctional kyphosis in adolescent idiopathic scoliosis following pedicle screw, hook, or hybrid instrumentation. Spine (Phila Pa 1976) 35(2):177–181

    Article  Google Scholar 

  39. Basques BA, Long WD 3rd, Golinvaux NS, Bohl DD, Samuel AM, Lukasiewicz AM, Webb ML, Grauer JN (2017) Poor visualization limits diagnosis of proximal junctional kyphosis in adolescent idiopathic scoliosis. Spine J 17(6):784–789

  40. Ilharreborde B, Ferrero E, Angelliaume A, Lefèvre Y, Accadbled F, Simon AL, de Gauzy JS, Mazda K (2017) Selective versus hyperselective posterior fusions in Lenke 5 adolescent idiopathic scoliosis: comparison of radiological and clinical outcomes. Eur Spine J 26(6):1739–1747

  41. Takayama K, Nakamura H, Matsuda H (2009) Low back pain in patients treated surgically for scoliosis: longer than sixteen-year follow-up. Spine (Phila Pa 1976) 34(20):2198–2204

    Article  Google Scholar 

  42. Akazawa T, Minami S, Kotani T, Nemoto T, Koshi T, Takahashi K (2012) Long-term clinical outcomes of surgery for adolescent idiopathic scoliosis 21 to 41 years later. Spine (Phila Pa 1976) 37(5):402–405

    Article  Google Scholar 

  43. Danielsson AJ, Nachemson AL (2003) Back pain and function 23 years after fusion for adolescent idiopathic scoliosis: a case–control study-part II. Spine (Phila Pa 1976) 28(18):E373–E383

    Article  Google Scholar 

  44. Delfino R, Pizones J, Ruiz-Juretschke C, Sánchez-Mariscal F, Zúñiga L, Izquierdo E (2017) Selective anterior thoracolumbar fusion in adolescent idiopathic scoliosis: long-term results after 17-year follow-up. Spine (Phila Pa 1976) 42(13):E788–E794

  45. Lavelle WF, Beltran AA, Carl AL, Uhl RL, Hesham K, Albanese SA (2016) Fifteen to twenty-five year functional outcomes of twenty-two patients treated with posterior Cotrel-Dubousset type instrumentation: a limited but detailed review of outcomes. Scoliosis Spinal Disord 8(11):18

    Article  Google Scholar 

  46. Merriman M, Hu C, Noyes K, Sanders J (2015) Selection of the lowest level for fusion in adolescent idiopathic scoliosis-a systematic review and meta-analysis. Spine Deform 3(2):128–135

    Article  PubMed  Google Scholar 

  47. Larson AN, Fletcher ND, Daniel C, Richards BS (2012) Lumbar curve is stable after selective thoracic fusion for adolescent idiopathic scoliosis: a 20-year follow-up. Spine (Phila Pa 1976) 37(10):833–839

    Article  Google Scholar 

  48. Bernstein P, Hentschel S, Platzek I, Hühne S, Ettrich U, Hartmann A, Seifert J (2014) Thoracal flat back is a risk factor for lumbar disc degeneration after scoliosis surgery. Spine J 14(6):925–932

    Article  PubMed  Google Scholar 

  49. Enercan M, Kahraman S, Cobanoglu M, Yilar S, Gokcen BH, Karadereler S, Mutlu A, Ulusoy LO, Ozturk C, Erturer E, Gebes E, Sanli T, Alanay A, Hamzaoglu A (2015) Selective thoracic fusion provides similar health-related quality of life but can cause more lumbar disc and facet joint degeneration: a comparison of adolescent idiopathic scoliosis patients with normal population 10 years after surgery. Spine Deform 3(5):469–475

    Article  PubMed  Google Scholar 

  50. Pérez-Grueso FS, Fernández-Baíllo N, Arauz de Robles S, García Fernández A (2000) The low lumbar spine below Cotrel-Dubousset instrumentation: long-term findings. Spine (Phila Pa 1976) 25(18):2333–2341

    Article  Google Scholar 

  51. Green DW, Lawhorne TW 3rd, Widmann RF, Kepler CK, Ahern C, Mintz DN, Rawlins BA, Burke SW, Boachie-Adjei O (2011) Long-term magnetic resonance imaging follow-up demonstrates minimal transitional level lumbar disc degeneration after posterior spine fusion for adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 36(23):1948–1954

    Article  Google Scholar 

  52. Abelin-Genevois K, Estivalezes E, Briot J, Sévely A, Sales de Gauzy J, Swider P (2015) Spino-pelvic alignment influences disc hydration properties after AIS surgery: a prospective MRI-based study. Eur Spine J 24(6):1183–1190

    Article  PubMed  Google Scholar 

  53. Lamartina C, Berjano P (2015) Osteotomies of the spine: “technique of the decade”? Eur Spine J 24(Suppl 1):S1–S2

    Article  PubMed  Google Scholar 

  54. Ilharreborde B, Dubousset J, Le Huec JC (2014) Use of EOS imaging for the assessment of scoliosis deformities: application to postoperative 3D quantitative analysis of the trunk. Eur Spine J 23(Suppl 4):S397–S405

    PubMed  Google Scholar 

  55. Illés T, Tunyogi-Csapó M, Somoskeöy S (2011) Breakthrough in three-dimensional scoliosis diagnosis: significance of horizontal plane view and vertebra vectors. Eur Spine J 20(1):135–143

    Article  PubMed  Google Scholar 

  56. Fletcher ND, Hopkins J, McClung A, Browne R, Sucato DJ (2012) Residual thoracic hypokyphosis after posterior spinal fusion and instrumentation in adolescent idiopathic scoliosis: risk factors and clinical ramifications. Spine (Phila Pa 1976) 1 37(3):200–206

    Article  Google Scholar 

  57. Ilharreborde B, Pesenti S, Ferrero E, Accadbled F, Jouve JL, Sales de Gauzy J, Mazda K (2017) Correction of the hypokyphosis in thoracic adolescent idiopathic scoliosis using sublaminar bands: a 3D multicenter study. Eur Spine J. https://doi.org/10.1007/s00586-017-5166-8

  58. Yeung KW, Lu WW, Luk KD, Cheung KM (2006) Mechanical testing of a smart spinal implant locking mechanism based on nickel–titanium alloy. Spine (Phila Pa 1976) 31:2296–2303

    Article  Google Scholar 

  59. Wu S, Liu X, Chan YL, Chu PK, Chung CY, Chu C, Yeung KW, Lu WW, Cheung KM, Luk KD (2009) Nickel release behavior and surface characteristics of porous NiTi shape memory alloy modified by different chemical processes. J Biomed Mater Res A 89:483–489

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brice Ilharreborde.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilharreborde, B. Sagittal balance and idiopathic scoliosis: does final sagittal alignment influence outcomes, degeneration rate or failure rate?. Eur Spine J 27 (Suppl 1), 48–58 (2018). https://doi.org/10.1007/s00586-018-5472-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-018-5472-9

Keywords

Navigation