Skip to main content

Advertisement

Log in

Assessing intraoperative blood flow in cardiovascular surgery

  • Review Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Off-pump coronary arterial bypass grafting and new surgical apparatus and techniques have decreased the mortality rate associated with this procedure to approximately 1.5%. If we could detect problems in the constructed coronary anastomoses by an alternative imaging system to coronary angiography during surgery, decisions to revise the surgical procedure could be made without hesitation. Meanwhile, the intraoperative direct evaluation of intestinal blood flow during abdominal aortic aneurysmal surgery is required to prevent ischemic colitis, which is a devastating complication. Indocyanine green (ICG) has recently improved ophthalmic angiography and the navigation systems of oncological surgery. The fluorescence illumination of ICG with a near-infrared light is captured on camera. In coronary arterial surgery, the ICG imaging system is also becoming increasingly useful. A new ICG imaging system, the HyperEye Medical System (HEMS), provides a clear view of the blood flow and ischemic area with color visualization. Furthermore, its combination with a quantitative blood flow assessment tool such as transit time flow measurement could improve the accuracy of intraoperative examination. In this review, we evaluate the current strategies of assessing blood flow intraoperatively with an ICG imaging system in cardiovascular surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parolari A, Alamanni F, Polvani G, Agrifoglio M, Chen YB, Kassem S, et al. Meta-analysis of randomized trials comparing off-pump with on-pump coronary artery bypass graft patency. Ann Thorac Surg 2005;80:2121–2125.

    Article  PubMed  Google Scholar 

  2. Khan NE, De Souza A, Mister R, Flather M, Clague J, Davies S, et al. A randomized comparison of off-pump and on-pump multivessel coronary-artery bypass surgery. N Engl J Med 2004;350:21–28.

    Article  PubMed  CAS  Google Scholar 

  3. Puskas JD, Williams WH, Mahoney EM, Huber PR, Block PC, Duke PG, et al. Off-pump vs conventional coronary artery bypass grafting: early and 1-year graft patency, cost, and quality-of-life outcomes: a randomized trial. JAMA 2004;291:1841–1849.

    Article  PubMed  CAS  Google Scholar 

  4. Shroyer AL, Grover FL, Hattler B, Collins JF, McDonald GO, Kozora E, et al. On-pump versus off-pump coronary-artery bypass surgery. N Engl J Med 2009;361:1827–1837.

    Article  PubMed  CAS  Google Scholar 

  5. Puskas JD, Thourani VH, Marshall JJ, Dempsey SJ, Steiner MA, Sammons BH, et al. Clinical outcomes, angiographic patency, and resource utilization in 200 consecutive off-pump coronary bypass patients. Ann Thorac Surg 2001;71:1477–1483; discussion 83–4.

    Article  PubMed  CAS  Google Scholar 

  6. Kobayashi J, Tashiro T, Ochi M, Yaku H, Watanabe G, Satoh T, et al. Early outcome of a randomized comparison of off-pump and on-pump multiple arterial coronary revascularization. Circulation 2005;112:I338–I343.

    PubMed  Google Scholar 

  7. Hirotani T, Kameda T, Shirota S, Nakao Y. An evaluation of the intraoperative transit time measurements of coronary bypass flow. Eur J Cardiothorac Surg 2001;19:848–852.

    Article  PubMed  CAS  Google Scholar 

  8. Balacumaraswami L, Taggart DP. Intraoperative imaging techniques to assess coronary artery bypass graft patency. Ann Thorac Surg 2007;83:2251–2257.

    Article  PubMed  Google Scholar 

  9. D’Ancona G, Karamanoukian HL, Ricci M, Schmid S, Bergsland J, Salerno TA. Graft revision after transit time flow measurement in off-pump coronary artery bypass grafting. Eur J Cardiothorac Surg 2000;17:287–293.

    Article  PubMed  Google Scholar 

  10. Ernst CB, Hagihara PF, Daugherty ME, Griffen WO, Jr. Inferior mesenteric artery stump pressure: a reliable index for safe IMA ligation during abdominal aortic aneurysmectomy. Ann Surg 1978;187:641–646.

    Article  PubMed  CAS  Google Scholar 

  11. Chen JC, Hildebrand HD, Salvian AJ, Taylor DC, Strandberg S, Myckatyn TM, et al. Predictors of death in nonruptured and ruptured abdominal aortic aneurysms. J Vasc Surg 1996;24:614–620; discussion 21–3.

    Article  PubMed  CAS  Google Scholar 

  12. Champagne BJ, Lee EC, Valerian B, Mulhotra N, Mehta M. Incidence of colonic ischemia after repair of ruptured abdominal aortic aneurysm with endograft. J Am Coll Surg 2007;204:597–602.

    Article  PubMed  Google Scholar 

  13. Champagne BJ, Darling RC, 3rd, Daneshmand M, Kreienberg PB, Lee EC, Mehta M, et al. Outcome of aggressive surveillance colonoscopy in ruptured abdominal aortic aneurysm. J Vasc Surg 2004;39:792–796.

    Article  PubMed  Google Scholar 

  14. Zelenock GB, Strodel WE, Knol JA, Messina LM, Wakefield TW, Lindenauer SM, et al. A prospective study of clinically and endoscopically documented colonic ischemia in 100 patients undergoing aortic reconstructive surgery with aggressive colonic and direct pelvic revascularization, compared with historic controls. Surgery 1989;106:771–779; discussion 9–80.

    PubMed  CAS  Google Scholar 

  15. Piotrowski JJ, Ripepi AJ, Yuhas JP, Alexander JJ, Brandt CP. Colonic ischemia: the Achilles heel of ruptured aortic aneurysm repair. Am Surg 1996;62:557–560; discussion 60–1.

    PubMed  CAS  Google Scholar 

  16. Iwai T, Sakurazawa K, Sato S, Muraoka Y, Inoue Y, Endo M. Intraoperative monitoring of the pelvic circulation using a transanal Doppler probe. Euro J Vasc Surg 1991;5:71–74.

    Article  CAS  Google Scholar 

  17. Conte MS. Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) and the (hoped for) dawn of evidencebased treatment for advanced limb ischemia. J Vasc Surg; 51:69S–75S.

  18. Takahashi M, Ishikawa T, Higashidani K, Katoh H. SPY: an innovative intra-operative imaging system to evaluate graft patency during off-pump coronary artery bypass grafting. Interact Cardiovasc Thorac Surg 2004;3:479–483.

    Article  PubMed  Google Scholar 

  19. Reuthebuch O, Haussler A, Genoni M, Tavakoli R, Odavic D, Kadner A, et al. Novadaq SPY: intraoperative quality assessment in off-pump coronary artery bypass grafting. Chest 2004;125:418–424.

    Article  PubMed  Google Scholar 

  20. Taggart DP, Choudhary B, Anastasiadis K, Abu-Omar Y, Balacumaraswami L, Pigott DW. Preliminary experience with a novel intraoperative fluorescence imaging technique to evaluate the patency of bypass grafts in total arterial revascularization. Ann Thorac Surg 2003;75:870–873.

    Article  PubMed  Google Scholar 

  21. Rubens FD, Ruel M, Fremes SE. A new and simplified method for coronary and graft imaging during CABG. Heart Surg Forum 2002;5:141–144.

    PubMed  Google Scholar 

  22. Handa T, Katare RG, Sasaguri S, Sato T. Preliminary experience for the evaluation of the intraoperative graft patency with real color charge-coupled device camera system: an advanced device for simultaneous capturing of color and near-infrared images during coronary artery bypass graft. Interact Cardiovasc Thorac Surg 2009;9:150–154.

    Article  PubMed  Google Scholar 

  23. Piccolino FC, Borgia L, Zinicola E. Indocyanine green angiography of circumscribed choroidal hemangiomas. Retina 1996;16:19–28.

    Article  PubMed  CAS  Google Scholar 

  24. Flower RW, Hochheimer BF. A clinical technique and apparatus for simultaneous angiography of the separate retinal and choroidal circulations. Invest Ophthalmol 1973;12:248–261.

    PubMed  CAS  Google Scholar 

  25. Kitai T, Miwa M, Liu H, Beauvoit B, Chance B, Yamaoka Y. Application of near-infrared time-resolved spectroscopy to rat liver — a preliminary report for surgical application. Phys Med Biol 1999;44:2049–2061.

    Article  PubMed  CAS  Google Scholar 

  26. Kitai T, Inomoto T, Miwa M, Shikayama T. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer 2005;12:211–215.

    Article  PubMed  Google Scholar 

  27. Ohdaira H, Nimura H, Takahashi N, Mitsumori N, Kashiwagi H, Narimiya N, et al. The possibility of performing a limited resection and a lymphadenectomy for proximal gastric carcinoma based on sentinel node navigation. Surg Today 2009;39:1026–1031.

    Article  PubMed  Google Scholar 

  28. Watanabe M, Tsunoda A, Narita K, Kusano M, Miwa M. Colonic tattooing using fluorescence imaging with light-emitting diodeactivated indocyanine green: a feasibility study. Surg Today 2009;39:214–218.

    Article  PubMed  Google Scholar 

  29. Balacumaraswami L, Taggart DP. Digital tools to facilitate intraoperative coronary artery bypass graft patency assessment. Semin Thorac Cardiovasc Surg 2004;16:266–271.

    Article  PubMed  Google Scholar 

  30. Singh SK, Desai ND, Chikazawa G, Tsuneyoshi H, Vincent J, Zagorski BM, et al. The Graft Imaging to Improve Patency (GRIIP) clinical trial results. J Thorac Cardiovasc Surg; 139:294–301.

  31. Handa T, Katare RG, Nishimori H, Wariishi S, Fukutomi T, Yamamoto M, et al. New device for intraoperative graft assessment: HyperEye charge-coupled device camera system. Gen Thorac Cardiovasc Surg 2010;58:68–77.

    Article  PubMed  Google Scholar 

  32. D’Ancona G, Bartolozzi F, Bogers AJ, Pilato M, Parrinello M, Kappetein AP. Intraoperative graft patency verification in coro nary artery surgery: modern diagnostic tools. J Cardiothorac Vasc Anesth 2009;23:232–238.

    Article  PubMed  Google Scholar 

  33. Louagie YA, Haxhe JP, Jamart J, Buche M, Schoevaerdts JC. Doppler flow measurement in coronary artery bypass grafts and early postoperative clinical outcome. Thorac Cardiovasc Surg 1994;42:175–181.

    Article  PubMed  CAS  Google Scholar 

  34. Jaber SF, Koenig SC, BhaskerRao B, VanHimbergen DJ, Cerrito PB, Ewert DJ, et al. Role of graft flow measurement technique in anastomotic quality assessment in minimally invasive CABG. Ann Thorac Surg 1998;66:1087–1092.

    Article  PubMed  CAS  Google Scholar 

  35. Desai ND, Miwa S, Kodama D, Koyama T, Cohen G, Pelletier MP, et al. A randomized comparison of intraoperative indocyanine green angiography and transit-time flow measurement to detect technical errors in coronary bypass grafts. J Thorac Cardiovasc Surg 2006;132:585–594.

    Article  PubMed  Google Scholar 

  36. Schmitz C, Ashraf O, Schiller W, Preusse CJ, Esmailzadeh B, Likungu JA, et al. Transit time flow measurement in on-pump and off-pump coronary artery surgery. J Thorac Cardiovasc Surg 2003;126:645–650.

    Article  PubMed  Google Scholar 

  37. Unno N, Suzuki M, Yamamoto N, Inuzuka K, Sagara D, Nishiyama M, et al. Indocyanine green fluorescence angiography for intraoperative assessment of blood flow: a feasibility study. Eur J Vasc Endovasc Surg 2008;35:205–207.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, M., Sasaguri, S. & Sato, T. Assessing intraoperative blood flow in cardiovascular surgery. Surg Today 41, 1467–1474 (2011). https://doi.org/10.1007/s00595-010-4553-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-010-4553-0

Key words

Navigation