Skip to main content
Log in

Utilizing a nanocomposite consisting of zinc ferrite, copper oxide, and gold nanoparticles in the fabrication of a metformin electrochemical sensor supported on a glassy carbon electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The conception and development of a new electrochemical sensor is reported for the detection of metformin (MET). Zinc ferrite and copper oxide nanostructure (ZnFe2O4-CuO) and gold nanoparticles (AuNPs) have been used to prepare a nanocomposite in modifying a glassy carbon electrode (GCE). The unique ZnFe2O4-CuO/Au nanocomposite was applied as a sensor for the determination of traces of MET by some electroanalytical techniques. Experimental parameters affecting the results were investigated and optimized. Under the optimum conditions and at a working potential of 0.85 V (vs. Ag/AgCl/3.0 M KCl), the sensor response is linear in the MET range of 1.0 nmol L−1 to 1.0 μmol L−1 MET. The limit of detection (LOD) is 0.3 nmol L−1 (at an S/N ratio of 3) and the sensitivity is 1.13 μA μmol L−1 cm−2. The sensor was applied to the determination of MET in real samples where it gave acceptable results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lebovitz HE (2004) Oral antidiabetic agents: 2004. Med Clin N Am 88(4):847–863

    CAS  PubMed  Google Scholar 

  2. Ghasemi F, Ghasemi K, Rezvani AR, Shokrollahi A, Refahi M, García-Granda S, Mendoza-Meroño R (2017) A novel salt of antidiabetic drug metformin resulting from a proton transfer reaction: synthesis, characterization, crystal structure and solution studies. J Mol Struct 1131:30–35

    CAS  Google Scholar 

  3. Li D, Yeung SCJ, Hassan MM, Konopleva M, Abbruzzese JL (2009) Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology 137(2):482–488

    PubMed  PubMed Central  Google Scholar 

  4. Umapathi P, Ayyappan J, Quine SD (2012) Quantitative determination of metformin hydrochloride in tablet formulation containing croscarmellose sodium as disintegrant by HPLC and UV spectrophotometry. Trop J Pharm Res 11(1):107–116

    CAS  Google Scholar 

  5. Chiavarino B, Crestoni ME, Di Marzio A, Fornarini S (1998) Determination of sulfonamide antibiotics by gas chromatography coupled with atomic emission detection. J Chromatogr B Biomed Sci Appl 706(2):269–277

    CAS  PubMed  Google Scholar 

  6. Hamdan II, Jaber AB, Abushoffa AM (2010) Development and validation of a stability indicating capillary electrophoresis method for the determination of metformin hydrochloride in tablets. J Pharm Biomed Anal 53(5):1254–1257

    CAS  PubMed  Google Scholar 

  7. Calatayud JM, Falco PC, Pascual Marti YM (1985) Metformin and moroxidine determination with Cu (II). Anal Lett 18(11):1381–1390

    CAS  Google Scholar 

  8. Feng SY, Lai EP, Dabek-Zlotorzynska E, Sadeghi S (2004) Molecularly imprinted solid-phase extraction for the screening of antihyperglycemic biguanides. J Chromatogr A 1027(1–2):155–160

    CAS  PubMed  Google Scholar 

  9. Habib IHI, Kamel MS (2003) Near infra-red reflectance spectroscopic determination of metformin in tablets. Talanta 60(1):185–190

    CAS  PubMed  Google Scholar 

  10. Sohrabi MR, Kamali N, Khakpour M (2011) Simultaneous spectrophotometric determination of metformin hydrochloride and glibenclamide in binary mixtures using combined discrete and continuous wavelet transforms. Anal Sci 27(10):1037–1041

    CAS  PubMed  Google Scholar 

  11. Gadape HH, Parikh KS (2011) Quantitative determination and validation of metformin hydrochloride in pharmaceutical using quantitative nuclear magnetic resonance spectroscopy. J Chem 8(2):767–781

    CAS  Google Scholar 

  12. Sattarahmady N, Heli H, Faramarzi F (2010) Nickel oxide nanotubes-carbon microparticles/Nafion nanocomposite for the electrooxidation and sensitive detection of metformin. Talanta 82(4):1126–1135

    CAS  PubMed  Google Scholar 

  13. Tian XJ, Song JF, Luan XJ, Wang YY, Shi QZ (2006) Determination of metformin based on amplification of its voltammetric response by a combination of molecular wire and carbon nanotubes. Anal Bioanal Chem 386(7–8):2081–2086

    CAS  PubMed  Google Scholar 

  14. Skrzypek S, Mirčeski V, Ciesielski W, Sokołowski A, Zakrzewski R (2007) Direct determination of metformin in urine by adsorptive catalytic square-wave voltammetry. J Pharm Biomed Anal 45(2):275–281

    CAS  PubMed  Google Scholar 

  15. Gholivand MB, Mohammadi-Behzad L (2013) Differential pulse voltammetric determination of metformin using copper-loaded activated charcoal modified electrode. Anal Biochem 438(1):53–60

    CAS  PubMed  Google Scholar 

  16. Shahnavaz Z, Woi PM, Alias Y (2016) Electrochemical sensing of glucose by reduced graphene oxide-zinc ferrospinels. Appl Surf Sci 379:156–162

    CAS  Google Scholar 

  17. Yadav RS, Havlica J, Masilko J, Tkacz J, Kuřitka I, Vilcakova J (2016) Anneal-tuned structural, dielectric and electrical properties of ZnFe2O4 nanoparticles synthesized by starch-assisted sol–gel auto-combustion method. J Mater Sci Mater Electron 27(6):5992–6002

    CAS  Google Scholar 

  18. Wu G, Cheng Y, Ren Y, Wang Y, Wang Z, Wu H (2015) Synthesis and characterization of γ-Fe2O3@ C nanorod-carbon sphere composite and its application as microwave absorbing material. J Alloys Compd 652:346–350

    CAS  Google Scholar 

  19. Wu H, Wu G, Wang L (2015) Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol 269:443–451

    CAS  Google Scholar 

  20. Wu G, Cheng Y, Xiang F, Jia Z, Xie Q, Wu G, Wu H (2016) Morphology-controlled synthesis, characterization and microwave absorption properties of nanostructured 3D CeO2. Mater Sci Semicond Process 41:6–11

    CAS  Google Scholar 

  21. Yang Y, Liu X, Yang Y, Xiao W, Li Z, Xue D, Li F, Ding J (2013) Synthesis of nonstoichiometric zinc ferrite nanoparticles with extraordinary room temperature magnetism and their diverse applications. J Mater Chem C 1(16):2875–2885

    CAS  Google Scholar 

  22. Ghanbari MH, Shahdost-Fard F, Rostami M, Khoshroo A, Sobhani-Nasab A, Gholipour N, Salehzadeh H, Ganjali MR, Rahimi-Nasrabadi M, Ahmadi F (2019) Electrochemical determination of the antipsychotic medication clozapine by a carbon paste electrode modified with a nanostructure prepared from titania nanoparticles and copper oxide. Microchim Acta 186(11):698

    Google Scholar 

  23. Ghanbari MH, Shahdost-Fard F, Salehzadeh H, Ganjali MR, Iman M, Rahimi-Nasrabadi M, Ahmadi F (2019) A nanocomposite prepared from reduced graphene oxide, gold nanoparticles and poly (2-amino-5-mercapto-1, 3, 4-thiadiazole) for use in an electrochemical sensor for doxorubicin. Microchim Acta 186(9):641

    Google Scholar 

  24. Ghanbari MH, Khoshroo A, Sobati H, Ganjali MR, Rahimi-Nasrabadi M, Ahmadi F (2019) An electrochemical sensor based on poly (L-cysteine)@ AuNPs@ reduced graphene oxide nanocomposite for determination of levofloxacin. Microchem J 147:198–206

    CAS  Google Scholar 

  25. Ghanbari MH, Norouzi Z, Ghanbari MM (2020) Using a nanocomposite consist of Boron-doped reduced graphene oxide and electropolymerized β-cyclodextrin for Flunitrazepam electrochemical sensor. Microchem J:104994

  26. Ghanbari, M. H., & Norouzi, Z. (2020). A new nanostructure consisting of nitrogen-doped carbon nanoonions for an electrochemical sensor to the determination of doxorubicin. Microchem J, 105098

  27. Ghanbari MH, Rahimi-Nasrabadi M, Sobati H (2019) Modifying a glassy carbon electrode with reduced graphene oxide for the determination of levofloxacin with a glassy. Anal Bioanal Electrochem 11(2):189–200

    CAS  Google Scholar 

  28. Zhao Z, Zhang M, Chen X, Li Y, Wang J (2015) Electrochemical co-reduction synthesis of aupt bimetallic nanoparticles-graphene nanocomposites for selective detection of dopamine in the presence of ascorbic acid and uric acid. Sensors 15(7):16614–16631

    CAS  PubMed  Google Scholar 

  29. Meenakshi P, Karthick R, Selvaraj M, Ramu S (2014) Investigations on reduced graphene oxide film embedded with silver nanowire as a transparent conducting electrode. Sol Energy Mater Sol Cells 128:264–269

    CAS  Google Scholar 

  30. Geng H, Ang H, Ding X, Tan H, Guo G, Qu G, Yang Y, Zheng J, Yan Q, Gu H (2016) Metal coordination polymer derived mesoporous Co3O4 nanorods with uniform TiO2 coating as advanced anodes for lithium ion batteries. Nanoscale 8(5):2967–2973

    CAS  PubMed  Google Scholar 

  31. Ghosh Chaudhuri R, Paria S (2011) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112(4):2373–2433

    PubMed  Google Scholar 

  32. Ishiguro H, Yao Y, Nakano R, Hara M, Sunada K, Hashimoto K, Kajioka J, Fujishima A, Kubota Y (2013) Photocatalytic activity of Cu2+/TiO2-coated cordierite foam inactivates bacteriophages and Legionella pneumophila. Appl Catal B Environ 129:56–61

    CAS  Google Scholar 

  33. Sinthiya MMA, Ramamurthi K, Mathuri S, Manimozhi T, Kumaresan N, Margoni MM, Karthika PC (2015) Synthesis of zinc ferrite (ZnFe2O4) nanoparticles with different capping agents. Int J Chem Tech Res 7:2144–2149

    CAS  Google Scholar 

  34. Ghanbari MH, Shahdost-fard F, Khoshroo A, Rahimi-Nasrabadi M, Ganjali MR, Wysokowski M et al (2019) A nanocomposite consisting of reduced graphene oxide and electropolymerized β-cyclodextrin for voltammetric sensing of levofloxacin. Microchim Acta 186(7):438

    Google Scholar 

  35. Dehdashtian S, Gholivand MB, Shamsipur M, Karimi Z (2015) A nano sized functionalized mesoporous silica modified carbon paste electrode as a novel, simple, robust and selective anti-diabetic metformin sensor. Sensors Actuators B Chem 221:807–815

    CAS  Google Scholar 

  36. Tian XJ, Song JF (2007) Catalytic action of copper (II) ion on electrochemical oxidation of metformine and voltammetric determination of metformine in pharmaceuticals. J Pharm Biomed Anal 44(5):1192–1196

    CAS  PubMed  Google Scholar 

  37. Narang J, Malhotra N, Singhal C, Bhatia R, Kathuria V, Jain M (2017) Graphene nanoflakes on transparent glass electrode sensor for electrochemical sensing of anti-diabetic drug. Bioprocess Biosyst Eng 40(4):537–548

    CAS  PubMed  Google Scholar 

  38. Gholivand MB, Shamsipur M, Paimard G, Feyzi M, Jafari F (2014) Synthesis of Fe–Cu/TiO2 nanostructure and its use in construction of a sensitive and selective sensor for metformin determination. Mater Sci Eng C 42:791–798

    CAS  Google Scholar 

  39. Mirzajani R, Karimi S (2018) Preparation of γ-Fe2O3/hydroxyapatite/Cu (II) magnetic nanocomposite and its application for electrochemical detection of metformin in urine and pharmaceutical samples. Sensors Actuators B Chem 270:405–416

    CAS  Google Scholar 

  40. Rahbar N, Abbaszadegan P, Savarizadeh A (2018) A sensitive fluorescent sensing strategy for nanomolar levels of metformin using graphitic carbon nitride nanosheets as nanofluoroprobe. Anal Chim Acta 1026:117–124

    CAS  PubMed  Google Scholar 

  41. Abdel-Ghany MF, Abdel-Aziz O, Ayad MF, Tadros MM (2014) Validation of different spectrophotometric methods for determination of vildagliptin and metformin in binary mixture. Spectrochim Acta A Mol Biomol Spectrosc 125:175–182

    CAS  PubMed  Google Scholar 

  42. Petersen KF, Sullivan JT (2001) Effects of a novel glucagon receptor antagonist (bay 27–9955) on glucagon-stimulated glucose production in humans. Diabetologia 44(11):2018–2024

    CAS  PubMed  Google Scholar 

  43. Umapathi P, Ayyappan J, Quine SD (2012) Quantitative determination of metformin hydrochloride in tablet formulation containing croscarmellose sodium as disintegrant by HPLC and UV spectrophotometry. Trop J Pharm Res 11(1):107–116

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Ghanbari.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.40 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari, M.H., Sharafi, P., Nayebossadr, S. et al. Utilizing a nanocomposite consisting of zinc ferrite, copper oxide, and gold nanoparticles in the fabrication of a metformin electrochemical sensor supported on a glassy carbon electrode. Microchim Acta 187, 557 (2020). https://doi.org/10.1007/s00604-020-04529-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04529-8

Keywords

Navigation