Skip to main content
Erschienen in: Journal of Neural Transmission 3/2011

01.03.2011 | Basic Neurosciences, Genetics and Immunology - Review article

Brain iron metabolism and its perturbation in neurological diseases

Erschienen in: Journal of Neural Transmission | Ausgabe 3/2011

Einloggen, um Zugang zu erhalten

Abstract

Metal ions are of particular importance in brain function, notably iron. A broad overview of iron metabolism and its homeostasis both at the cellular level (involving regulation at the level of mRNA translation) and the systemic level (involving the peptide ‘hormone’ hepcidin) is presented. The mechanisms of iron transport both across the blood–brain barrier and within the brain are then examined. The importance of iron in the developing foetus and in early life is underlined. We then review the growing corpus of evidence that many neurodegenerative diseases (NDs) are the consequence of dysregulation of brain iron homeostasis. This results in the production of reactive oxygen species, generating reactive aldehydes, which, together with further oxidative insults, causes oxidative modification of proteins, manifested by carbonyl formation. These misfolded and damaged proteins overwhelm the ubiquitin/proteasome system, accumulating the characteristic inclusion bodies found in many NDs. The involvement of iron in Alzheimer’s disease and Parkinson’s disease is then examined, with emphasis on recent data linking in particular interactions between iron homeostasis and key disease proteins. We conclude that there is overwhelming evidence for a direct involvement of iron in NDs.
Fußnoten
1
Other proteins with functional IREs in their 5′-UTR include hypoxia-inducible factor 2a (Zimmer et al. 2008), erythroid aminolaevulinate synthase and mitochondrial aconitase (reviewed in Hentze and Kühn 1996) and more recently amyloid precursor protein (Cho et al. 2010).
 
Literatur
Zurück zum Zitat Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2009) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25PubMedCrossRef Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2009) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25PubMedCrossRef
Zurück zum Zitat Altamura S, Muckenthaler MU (2009) Iron toxicity in diseases of ageing: Alzheimer’s Disease, Parkinson’s Disease and Atherosclerosis. J Alzheimers Dis 16:879–895PubMed Altamura S, Muckenthaler MU (2009) Iron toxicity in diseases of ageing: Alzheimer’s Disease, Parkinson’s Disease and Atherosclerosis. J Alzheimers Dis 16:879–895PubMed
Zurück zum Zitat Arawaka S, Saito Y, Murayama S, Mori H (1998) Lewy body in neurodegeneration with brain iron accumulation type 1 is immunoreactive for alpha-synuclein. Neurology 51:887–889PubMed Arawaka S, Saito Y, Murayama S, Mori H (1998) Lewy body in neurodegeneration with brain iron accumulation type 1 is immunoreactive for alpha-synuclein. Neurology 51:887–889PubMed
Zurück zum Zitat Babitt JL, Huang FW, Wrighting DM, Xia Y, Sidis Y, Samad TA, Campagna JA, Chung RT, Schneyer AL, Woolf CJ, Andrews NC, Lin HY (2006) Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet 38:531–539PubMedCrossRef Babitt JL, Huang FW, Wrighting DM, Xia Y, Sidis Y, Samad TA, Campagna JA, Chung RT, Schneyer AL, Woolf CJ, Andrews NC, Lin HY (2006) Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet 38:531–539PubMedCrossRef
Zurück zum Zitat Beal MF (2002) Oxidatively modified proteins in aging and disease. Free Radic Biol Med 32:797–803PubMedCrossRef Beal MF (2002) Oxidatively modified proteins in aging and disease. Free Radic Biol Med 32:797–803PubMedCrossRef
Zurück zum Zitat Beard JL (2008) Why iron deficiency is important in infant development. J Nutr 138:2534–2536PubMed Beard JL (2008) Why iron deficiency is important in infant development. J Nutr 138:2534–2536PubMed
Zurück zum Zitat Beard JL, Wiesinger JA, Connor JR (2003a) Pre- and postweaning iron deficiency alters myelination in Sprague–Dawley rats. Dev Neurosci 25:308–315PubMedCrossRef Beard JL, Wiesinger JA, Connor JR (2003a) Pre- and postweaning iron deficiency alters myelination in Sprague–Dawley rats. Dev Neurosci 25:308–315PubMedCrossRef
Zurück zum Zitat Beard J, Erikson KM, Jones BC (2003b) Neonatal iron deficiency results in irreversible changes in dopamine function in rats. J Nutr 133:1174–1179PubMed Beard J, Erikson KM, Jones BC (2003b) Neonatal iron deficiency results in irreversible changes in dopamine function in rats. J Nutr 133:1174–1179PubMed
Zurück zum Zitat Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316PubMedCrossRef Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316PubMedCrossRef
Zurück zum Zitat Bradbury MWB (1997) Transport of iron in the blood–brain–cerebrospinal fluid system. J Neurochem 67:443–454 Bradbury MWB (1997) Transport of iron in the blood–brain–cerebrospinal fluid system. J Neurochem 67:443–454
Zurück zum Zitat Burdette SC, Lippard SJ (2003) Meeting of the minds: metalloneurochemistry. Proc Natl Acad Sci USA 100:3605–3610PubMedCrossRef Burdette SC, Lippard SJ (2003) Meeting of the minds: metalloneurochemistry. Proc Natl Acad Sci USA 100:3605–3610PubMedCrossRef
Zurück zum Zitat Burdo JR, Menzies SL, Simpson IA, Garrick LM, Garrick MD, Dolan KG, Haile DJ, Beard JL, Connor JR (2001) Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat. J Neurosci Res 66:1198–1207PubMedCrossRef Burdo JR, Menzies SL, Simpson IA, Garrick LM, Garrick MD, Dolan KG, Haile DJ, Beard JL, Connor JR (2001) Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat. J Neurosci Res 66:1198–1207PubMedCrossRef
Zurück zum Zitat Burhans MS, Dailey C, Beard Z, Wiesinger J, Murray-Kolb L, Jones BC, Beard JL (2005) Iron deficiency: differential effects on monoamine transporters. Nutr Neurosci 8:31–38PubMedCrossRef Burhans MS, Dailey C, Beard Z, Wiesinger J, Murray-Kolb L, Jones BC, Beard JL (2005) Iron deficiency: differential effects on monoamine transporters. Nutr Neurosci 8:31–38PubMedCrossRef
Zurück zum Zitat Bush AL, Tanzi RE (2002) The galvanization of beta-amyloid in Alzheimer’s disease. Proc Natl Acad Sci USA 99:97317–97319 Bush AL, Tanzi RE (2002) The galvanization of beta-amyloid in Alzheimer’s disease. Proc Natl Acad Sci USA 99:97317–97319
Zurück zum Zitat Castellani RJ, Siedlak SL, Perry G, Smith MA (2000) Sequestration of iron by Lewy bodies in Parkinson’s disease. Acta Neuropathol 100:111–114PubMedCrossRef Castellani RJ, Siedlak SL, Perry G, Smith MA (2000) Sequestration of iron by Lewy bodies in Parkinson’s disease. Acta Neuropathol 100:111–114PubMedCrossRef
Zurück zum Zitat Catala A (2009) Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids 157:1–11PubMedCrossRef Catala A (2009) Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids 157:1–11PubMedCrossRef
Zurück zum Zitat Cho HH, Cahill CM, Vanderburg CR et al (2010) Selective translational control of the Alzheimer amyloid precursor protein transcript by iron regulatory protein-1. J Biol Chem. doi:10.1074/jbc.M110.149161 Cho HH, Cahill CM, Vanderburg CR et al (2010) Selective translational control of the Alzheimer amyloid precursor protein transcript by iron regulatory protein-1. J Biol Chem. doi:10.​1074/​jbc.​M110.​149161
Zurück zum Zitat Connor JR, Snyder BS, Beard JL, Fine RE, Mufson EJ (1992) Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer’s disease. J Neurosci Res 31:327–335PubMedCrossRef Connor JR, Snyder BS, Beard JL, Fine RE, Mufson EJ (1992) Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer’s disease. J Neurosci Res 31:327–335PubMedCrossRef
Zurück zum Zitat Crichton RR (2008) Biological chemistry: an introduction. Elsevier, Amsterdam, p 369 Crichton RR (2008) Biological chemistry: an introduction. Elsevier, Amsterdam, p 369
Zurück zum Zitat Crichton RR (2009) Inorganic biochemistry of iron metabolism from molecular mechanisms to clinical consequences, 3rd edn. John Wiley and Sons, Chichester, pp 461 Crichton RR (2009) Inorganic biochemistry of iron metabolism from molecular mechanisms to clinical consequences, 3rd edn. John Wiley and Sons, Chichester, pp 461
Zurück zum Zitat Crichton RR, Ward RJ (2006) Metal-based neurodegeneration. From molecular mechanisms to therapeutic strategies John Wiley and Sons, pp 227 Crichton RR, Ward RJ (2006) Metal-based neurodegeneration. From molecular mechanisms to therapeutic strategies John Wiley and Sons, pp 227
Zurück zum Zitat Crichton RR, Dexter DT, Ward RJ (2008) Metal based neurodegenerative diseases—from molecular mechanisms to therapeutic strategies. Coord Chem Rev 252:1189–1199CrossRef Crichton RR, Dexter DT, Ward RJ (2008) Metal based neurodegenerative diseases—from molecular mechanisms to therapeutic strategies. Coord Chem Rev 252:1189–1199CrossRef
Zurück zum Zitat Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A (2003) Protein carbonylation in human disease. Trends Mol Med 9:169–176PubMedCrossRef Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A (2003) Protein carbonylation in human disease. Trends Mol Med 9:169–176PubMedCrossRef
Zurück zum Zitat Dallman PR, Beutler E, Finch CA (1978) Effects of iron deficiency exclusive of anaemia. Br J Haematol 40:179–184PubMedCrossRef Dallman PR, Beutler E, Finch CA (1978) Effects of iron deficiency exclusive of anaemia. Br J Haematol 40:179–184PubMedCrossRef
Zurück zum Zitat Dallman PR, Siimes MA, Stekel A (1980) Iron deficiency in infancy and childhood. Am J Clin Nutr 33:86–118PubMed Dallman PR, Siimes MA, Stekel A (1980) Iron deficiency in infancy and childhood. Am J Clin Nutr 33:86–118PubMed
Zurück zum Zitat De Domenico I, Ward DM, di Patti MC, Jeong SY, David S, Musci G, Kaplan J (2007) Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI–ceruloplasmin. EMBO J 26:2823–2831PubMedCrossRef De Domenico I, Ward DM, di Patti MC, Jeong SY, David S, Musci G, Kaplan J (2007) Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI–ceruloplasmin. EMBO J 26:2823–2831PubMedCrossRef
Zurück zum Zitat Fischer J, Devraj K, Ingram J, Slagle-Webb B, Madhankumar AB, Liu X, Klinger M, Simpson IA, Connor JR (2007) Ferritin: a novel mechanism for delivery of iron to the brain and other organs. Am J Physiol Cell Physiol 293:C641–C649CrossRef Fischer J, Devraj K, Ingram J, Slagle-Webb B, Madhankumar AB, Liu X, Klinger M, Simpson IA, Connor JR (2007) Ferritin: a novel mechanism for delivery of iron to the brain and other organs. Am J Physiol Cell Physiol 293:C641–C649CrossRef
Zurück zum Zitat Goedert M (2001) Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2:492–501PubMedCrossRef Goedert M (2001) Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2:492–501PubMedCrossRef
Zurück zum Zitat Golts N, Snyder H, Frasier M, Theisler C, Choi P, Wolozin B (2002) Magnesium inhibits spontaneous and iron-induced aggregation of alpha-synuclein. J Biol Chem 277:16116–16123PubMedCrossRef Golts N, Snyder H, Frasier M, Theisler C, Choi P, Wolozin B (2002) Magnesium inhibits spontaneous and iron-induced aggregation of alpha-synuclein. J Biol Chem 277:16116–16123PubMedCrossRef
Zurück zum Zitat Götz ME, Double K, Gerlach M, Youdim MB, Riederer P (2004) The relevance of iron in the pathogenesis of Parkinson’s disease. Ann NY Acad Sci 1012:193–208PubMedCrossRef Götz ME, Double K, Gerlach M, Youdim MB, Riederer P (2004) The relevance of iron in the pathogenesis of Parkinson’s disease. Ann NY Acad Sci 1012:193–208PubMedCrossRef
Zurück zum Zitat Grimsrud PA, Xie H, Griffin TJ, Bernlohr DA (2008) Oxidative stress and covalent modification of proteins with bioreactive aldehydes. J Biol Chem 283:21837–21841PubMedCrossRef Grimsrud PA, Xie H, Griffin TJ, Bernlohr DA (2008) Oxidative stress and covalent modification of proteins with bioreactive aldehydes. J Biol Chem 283:21837–21841PubMedCrossRef
Zurück zum Zitat Hashimoto M, Hsu LJ, Xia Y, Takeda A, Sisk A, Sundsmo M, Masliah E (1999) Oxidative stress induces amyloid-like aggregate formation of NACP/alpha-synuclein in vitro. Neuroreport 10:717–721PubMedCrossRef Hashimoto M, Hsu LJ, Xia Y, Takeda A, Sisk A, Sundsmo M, Masliah E (1999) Oxidative stress induces amyloid-like aggregate formation of NACP/alpha-synuclein in vitro. Neuroreport 10:717–721PubMedCrossRef
Zurück zum Zitat Hentze MW, Kühn LC (1996) Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Ssci USA 93:8175–8182CrossRef Hentze MW, Kühn LC (1996) Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Ssci USA 93:8175–8182CrossRef
Zurück zum Zitat Honda K, Casadesus G, Peterson RB, Perry G, Smith MA (2004) Oxidative stress and redox-active iron in Alzheimer’s disease. Ann NY Acad Sci 1012:179–182PubMedCrossRef Honda K, Casadesus G, Peterson RB, Perry G, Smith MA (2004) Oxidative stress and redox-active iron in Alzheimer’s disease. Ann NY Acad Sci 1012:179–182PubMedCrossRef
Zurück zum Zitat Honda K, Smith MA, Zhu X, Baus D, Merrick WC, Tartakoff AM, Hattier T, Harris PL, Siedlak SL, Fujioka H, Liu Q, Moreira PI, Miller FP, Nunomura A, Shimohama S, Perry G (2005) Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron. J Biol Chem 280:20978–20986PubMedCrossRef Honda K, Smith MA, Zhu X, Baus D, Merrick WC, Tartakoff AM, Hattier T, Harris PL, Siedlak SL, Fujioka H, Liu Q, Moreira PI, Miller FP, Nunomura A, Shimohama S, Perry G (2005) Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron. J Biol Chem 280:20978–20986PubMedCrossRef
Zurück zum Zitat Hwang EM, Kim SK, Sohn JH, Lee JY, Kim Y, Kim YS, Mook-Jung I (2006) Furin is an endogenous regulator of alpha-secretase associated APP processing. Biochem Biophys Res Commun 349:654–659PubMedCrossRef Hwang EM, Kim SK, Sohn JH, Lee JY, Kim Y, Kim YS, Mook-Jung I (2006) Furin is an endogenous regulator of alpha-secretase associated APP processing. Biochem Biophys Res Commun 349:654–659PubMedCrossRef
Zurück zum Zitat Jeong SY, David S (2003) Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J Biol Chem 278:27144–27148PubMedCrossRef Jeong SY, David S (2003) Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J Biol Chem 278:27144–27148PubMedCrossRef
Zurück zum Zitat Lozoff B, Beard J, Connor J, Barbara F, Georgieff M, Schallert T (2006) Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr Rev 64:S34–S43PubMedCrossRef Lozoff B, Beard J, Connor J, Barbara F, Georgieff M, Schallert T (2006) Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr Rev 64:S34–S43PubMedCrossRef
Zurück zum Zitat McMahon S, Grondin F, McDonald PP, Richard DE, Dubois CM (2005) Hypoxia-enhanced expression of the proprotein convertase furin is mediated by hypoxia-inducible factor-1: impact on the bioactivation of proproteins. J Biol Chem 280:6561–6569PubMedCrossRef McMahon S, Grondin F, McDonald PP, Richard DE, Dubois CM (2005) Hypoxia-enhanced expression of the proprotein convertase furin is mediated by hypoxia-inducible factor-1: impact on the bioactivation of proproteins. J Biol Chem 280:6561–6569PubMedCrossRef
Zurück zum Zitat Moos T, Morgan EH (2002) A morphological study of the developmentally regulated transport of iron into the brain. Dev Neurosci 24:99–105PubMedCrossRef Moos T, Morgan EH (2002) A morphological study of the developmentally regulated transport of iron into the brain. Dev Neurosci 24:99–105PubMedCrossRef
Zurück zum Zitat Moos T, Morgan EH (2004) The significance of the mutated divalent metal transporter (DMT1) on iron transport into the Belgrade rat brain. J Neurochem 88:233–245PubMedCrossRef Moos T, Morgan EH (2004) The significance of the mutated divalent metal transporter (DMT1) on iron transport into the Belgrade rat brain. J Neurochem 88:233–245PubMedCrossRef
Zurück zum Zitat Moos T, Rosengren Nielsen T (2006) Ferroportin in the postnatal rat brain: implications for axonal transport and neuronal export of iron. Semin Pediatr Neurol 13:149–157PubMedCrossRef Moos T, Rosengren Nielsen T (2006) Ferroportin in the postnatal rat brain: implications for axonal transport and neuronal export of iron. Semin Pediatr Neurol 13:149–157PubMedCrossRef
Zurück zum Zitat Moos T, Oates PS, Morgan EH (1998) Expression of the neuronal transferrin receptor is age dependent and susceptible to iron deficiency. J Comp Neurol 31:420–439CrossRef Moos T, Oates PS, Morgan EH (1998) Expression of the neuronal transferrin receptor is age dependent and susceptible to iron deficiency. J Comp Neurol 31:420–439CrossRef
Zurück zum Zitat Moos T, Skjoerringe T, Gosk S, Morgan EH (2006) Brain capillary endothelial cells mediate iron transport into the brain by segregating iron from transferrin without the involvement of divalent metal transporter 1. J Neurochem 98:1946–1958PubMedCrossRef Moos T, Skjoerringe T, Gosk S, Morgan EH (2006) Brain capillary endothelial cells mediate iron transport into the brain by segregating iron from transferrin without the involvement of divalent metal transporter 1. J Neurochem 98:1946–1958PubMedCrossRef
Zurück zum Zitat Moos T, Rosengren Nielsen T, Skjørringe T, Morgan EH (2007) Iron trafficking inside the brain. J Neurochem 103:1730–1740PubMedCrossRef Moos T, Rosengren Nielsen T, Skjørringe T, Morgan EH (2007) Iron trafficking inside the brain. J Neurochem 103:1730–1740PubMedCrossRef
Zurück zum Zitat Morgan EH (1977) Iron exchange between transferrin molecules mediated by phosphate compounds and other cell metabolites. Biochim Biophys Acta 499:169–177PubMed Morgan EH (1977) Iron exchange between transferrin molecules mediated by phosphate compounds and other cell metabolites. Biochim Biophys Acta 499:169–177PubMed
Zurück zum Zitat Morgan EH (1979) Studies on the mechanism of iron release from transferrin. Biochim Biophys Acta 580:312–326PubMed Morgan EH (1979) Studies on the mechanism of iron release from transferrin. Biochim Biophys Acta 580:312–326PubMed
Zurück zum Zitat Mueller S (2005) Iron regulatory protein 1 as a sensor of reactive oxygen species. Biofactors 24:171–181PubMedCrossRef Mueller S (2005) Iron regulatory protein 1 as a sensor of reactive oxygen species. Biofactors 24:171–181PubMedCrossRef
Zurück zum Zitat Münch G, Lüth HJ, Wong A, Arendt T, Hirsch E, Ravid R, Riederer P (2000) Crosslinking of alpha-synuclein by advanced glycation endproducts—an early pathophysiological step in Lewy body formation? J Chem Neuroanat 20:253–257PubMedCrossRef Münch G, Lüth HJ, Wong A, Arendt T, Hirsch E, Ravid R, Riederer P (2000) Crosslinking of alpha-synuclein by advanced glycation endproducts—an early pathophysiological step in Lewy body formation? J Chem Neuroanat 20:253–257PubMedCrossRef
Zurück zum Zitat Oakley AE, Collingwood JF, Dobson L et al (2007) Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurology 68:1820–1825PubMedCrossRef Oakley AE, Collingwood JF, Dobson L et al (2007) Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurology 68:1820–1825PubMedCrossRef
Zurück zum Zitat Oe T, Arora JS, Lee SH, Blair IA (2003) A novel lipid hydroperoxide-derived cyclic covalent modification to histone H4. J Biol Chem 27:42098–42105CrossRef Oe T, Arora JS, Lee SH, Blair IA (2003) A novel lipid hydroperoxide-derived cyclic covalent modification to histone H4. J Biol Chem 27:42098–42105CrossRef
Zurück zum Zitat Ohgami RS, Campagne DR, McDonald A, Fleming MD (2006) The Steap proteins are metalloreductases. Blood 108:1388–1394PubMedCrossRef Ohgami RS, Campagne DR, McDonald A, Fleming MD (2006) The Steap proteins are metalloreductases. Blood 108:1388–1394PubMedCrossRef
Zurück zum Zitat Ortiz E, Pasquini JM, Thompson K, Felt B, Butkus G, Beard J, Connor JR (2004) Effect of manipulation of iron storage, transport, or availability on myelin composition and brain iron content in three different animal models. J Neurosci Res 77:681–689PubMedCrossRef Ortiz E, Pasquini JM, Thompson K, Felt B, Butkus G, Beard J, Connor JR (2004) Effect of manipulation of iron storage, transport, or availability on myelin composition and brain iron content in three different animal models. J Neurosci Res 77:681–689PubMedCrossRef
Zurück zum Zitat Ostrerova-Golts N, Petrucelli L, Hardy J, Lee JM, Farer M, Wolozin B (2000) The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicity. J Neurosci 20:6048–6054PubMed Ostrerova-Golts N, Petrucelli L, Hardy J, Lee JM, Farer M, Wolozin B (2000) The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicity. J Neurosci 20:6048–6054PubMed
Zurück zum Zitat Rao R, Georgieff MK (2007) Iron in fetal, neonatal nutrition. Semin Fetal Neonatal Med 12:54–63PubMedCrossRef Rao R, Georgieff MK (2007) Iron in fetal, neonatal nutrition. Semin Fetal Neonatal Med 12:54–63PubMedCrossRef
Zurück zum Zitat Rao R, Tkac I, Townsend EL, Gruetter R, Georgieff MK (2003) Perinatal iron deficiency alters the neurochemical profile of the developing rat hippocampus. J Nutr 133:3215–3221PubMed Rao R, Tkac I, Townsend EL, Gruetter R, Georgieff MK (2003) Perinatal iron deficiency alters the neurochemical profile of the developing rat hippocampus. J Nutr 133:3215–3221PubMed
Zurück zum Zitat Rao R, Tkac I, Townsend EL, Ennis K, Gruetter R, Georgieff MK (2007) Perinatal iron deficiency predisposes the developing rat hippocampus to greater injury from mild to moderate hypoxia-ischemia. J Cereb Blood Flow Metab 27:872CrossRef Rao R, Tkac I, Townsend EL, Ennis K, Gruetter R, Georgieff MK (2007) Perinatal iron deficiency predisposes the developing rat hippocampus to greater injury from mild to moderate hypoxia-ischemia. J Cereb Blood Flow Metab 27:872CrossRef
Zurück zum Zitat Rogers JT, Randall JD, Cahill CM, Eder PS, Huang X, Gunshin H, Leiter L, McPhee J, Sarang SS, Utsuki T, Greig NH, Lahiri DK, Tanzi RE, Al Bush, Giordano T, Gullans SR (2002) An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J Biol Chem 277:45518–45528PubMedCrossRef Rogers JT, Randall JD, Cahill CM, Eder PS, Huang X, Gunshin H, Leiter L, McPhee J, Sarang SS, Utsuki T, Greig NH, Lahiri DK, Tanzi RE, Al Bush, Giordano T, Gullans SR (2002) An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J Biol Chem 277:45518–45528PubMedCrossRef
Zurück zum Zitat Sangchot P, Sharma S, Chetsawang B, Porter J, Govitrapong P, Ebadi M (2002) Deferoxamine attenuates iron-induced oxidative stress and prevents mitochondrial aggregation and alpha-synuclein translocation in SK–N–SH cells in culture. Dev Neurosci 24:143–153PubMedCrossRef Sangchot P, Sharma S, Chetsawang B, Porter J, Govitrapong P, Ebadi M (2002) Deferoxamine attenuates iron-induced oxidative stress and prevents mitochondrial aggregation and alpha-synuclein translocation in SK–N–SH cells in culture. Dev Neurosci 24:143–153PubMedCrossRef
Zurück zum Zitat Sayre LM, Lin D, Yuan Q, Zhu X, Tang X (2006) Protein adducts generated from products of lipid oxidation: focus on HNE and ONE. Drug Metab Rev 38:651–675PubMedCrossRef Sayre LM, Lin D, Yuan Q, Zhu X, Tang X (2006) Protein adducts generated from products of lipid oxidation: focus on HNE and ONE. Drug Metab Rev 38:651–675PubMedCrossRef
Zurück zum Zitat Schapira AH, Olanow CW (2004) Neuroprotection in Parkinson’s disease: mysteries, myths, and misconceptions. JAMA 291:358–364PubMedCrossRef Schapira AH, Olanow CW (2004) Neuroprotection in Parkinson’s disease: mysteries, myths, and misconceptions. JAMA 291:358–364PubMedCrossRef
Zurück zum Zitat Schneider C, Porter NA, Brash AR (2008) Routes to 4-hydroxynonenol: fundamental Issues in the mechanism of lipid peroxidation. J Biol Chem 283:15539–15543PubMedCrossRef Schneider C, Porter NA, Brash AR (2008) Routes to 4-hydroxynonenol: fundamental Issues in the mechanism of lipid peroxidation. J Biol Chem 283:15539–15543PubMedCrossRef
Zurück zum Zitat Seidah NG, Chrétien M, Day R (1994) The family of subtilisin/kexin like pro-protein and pro-hormone convertases: divergent or shared functions. Biochimie 76:197–209PubMedCrossRef Seidah NG, Chrétien M, Day R (1994) The family of subtilisin/kexin like pro-protein and pro-hormone convertases: divergent or shared functions. Biochimie 76:197–209PubMedCrossRef
Zurück zum Zitat Silvestri L, Camaschella C (2008) A potential pathogenetic role of iron in Alzheimer’s disease. J Cell Mol Med 12:1548–1550PubMedCrossRef Silvestri L, Camaschella C (2008) A potential pathogenetic role of iron in Alzheimer’s disease. J Cell Mol Med 12:1548–1550PubMedCrossRef
Zurück zum Zitat Silvestri L, Pagani A, Camaschella C (2008) Furin-mediated release of soluble hemojuvelin: a new link between hypoxia and iron homeostasis. Blood 111:924–931PubMedCrossRef Silvestri L, Pagani A, Camaschella C (2008) Furin-mediated release of soluble hemojuvelin: a new link between hypoxia and iron homeostasis. Blood 111:924–931PubMedCrossRef
Zurück zum Zitat Sipe JC, Lee P, Beutler E (2002) Brain iron metabolism and neurodegenerative disorders. Dev Neurosci 24:188–196PubMedCrossRef Sipe JC, Lee P, Beutler E (2002) Brain iron metabolism and neurodegenerative disorders. Dev Neurosci 24:188–196PubMedCrossRef
Zurück zum Zitat Smith MA, Harris PL, Sayre LM, Perry G (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci USA 94:9866–9868PubMedCrossRef Smith MA, Harris PL, Sayre LM, Perry G (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci USA 94:9866–9868PubMedCrossRef
Zurück zum Zitat Tachida Y, Nakagawa K, Saito T, Saido TC, Honda T, Saito Y, Murayama S, Endo T, Sakaguchi G, Kato A, Kitazume S, Hashimoto Y (2008) Interleukin-1 beta up-regulates TACE to enhance alpha-cleavage of APP in neurons: resulting decrease in Abeta production. J Neurochem 104:1387–1393PubMedCrossRef Tachida Y, Nakagawa K, Saito T, Saido TC, Honda T, Saito Y, Murayama S, Endo T, Sakaguchi G, Kato A, Kitazume S, Hashimoto Y (2008) Interleukin-1 beta up-regulates TACE to enhance alpha-cleavage of APP in neurons: resulting decrease in Abeta production. J Neurochem 104:1387–1393PubMedCrossRef
Zurück zum Zitat Takanashi M, Mochizuki H, Yokomizo K, Hattori N, Mori H, Yamamura Y, Mizuno Y (2001) Iron accumulation in the substantia nigra of autosomal recessive juvenile parkinsonism (ARJP). Parkinsonism Relat Disord 7:311–314PubMedCrossRef Takanashi M, Mochizuki H, Yokomizo K, Hattori N, Mori H, Yamamura Y, Mizuno Y (2001) Iron accumulation in the substantia nigra of autosomal recessive juvenile parkinsonism (ARJP). Parkinsonism Relat Disord 7:311–314PubMedCrossRef
Zurück zum Zitat Ward KL, Tkac I, Jing Y, Felt B, Beard J, Connor J, Schallert T, Georgieff MK, Rao R (2007) Gestational and lactational iron deficiency alters the developing striatal metabolome and associated behaviors in young rats. J Nutr 137:1043–1049PubMed Ward KL, Tkac I, Jing Y, Felt B, Beard J, Connor J, Schallert T, Georgieff MK, Rao R (2007) Gestational and lactational iron deficiency alters the developing striatal metabolome and associated behaviors in young rats. J Nutr 137:1043–1049PubMed
Zurück zum Zitat Woods HF, Youdim MB, Boullin D, Callender S (1976) Monoamine metabolism and platelet function in iron-deficiency anaemia. Ciba Found Symp 51:227–248PubMed Woods HF, Youdim MB, Boullin D, Callender S (1976) Monoamine metabolism and platelet function in iron-deficiency anaemia. Ciba Found Symp 51:227–248PubMed
Zurück zum Zitat Wu LJ, Leenders AG, Cooperman S, Meyron-Holtz E, Smith S, Land W, Tsai RY, Berger UV, Sheng ZH, Rouault TA (2004) Expression of the iron transporter ferroportin in synaptic vesicles and the blood–brain barrier. Brain Res 1001:108–117PubMedCrossRef Wu LJ, Leenders AG, Cooperman S, Meyron-Holtz E, Smith S, Land W, Tsai RY, Berger UV, Sheng ZH, Rouault TA (2004) Expression of the iron transporter ferroportin in synaptic vesicles and the blood–brain barrier. Brain Res 1001:108–117PubMedCrossRef
Zurück zum Zitat Zarkovic N (2003a) 4-Hydroxynonenal as a bioactive marker of pathophysiological processes. Mol Aspects Med 24:281–291PubMedCrossRef Zarkovic N (2003a) 4-Hydroxynonenal as a bioactive marker of pathophysiological processes. Mol Aspects Med 24:281–291PubMedCrossRef
Zurück zum Zitat Zarkovic K (2003b) 4-Hydroxynonenal and neurodegenerative diseases. Mol Aspects Med 24:293–303PubMedCrossRef Zarkovic K (2003b) 4-Hydroxynonenal and neurodegenerative diseases. Mol Aspects Med 24:293–303PubMedCrossRef
Zurück zum Zitat Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M, Gallorini M, Giaveri G, Arosio P et al (2004a) The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci USA 101:9843–9848PubMedCrossRef Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M, Gallorini M, Giaveri G, Arosio P et al (2004a) The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci USA 101:9843–9848PubMedCrossRef
Zurück zum Zitat Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004b) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873PubMedCrossRef Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004b) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873PubMedCrossRef
Zurück zum Zitat Zhang WH, Liu J, Xu G, Yuan Q, Sayre LM (2003) Model studies on protein side chain modification by 4-oxo-2-nonenal. Chem Res Toxicol 16:512–523PubMedCrossRef Zhang WH, Liu J, Xu G, Yuan Q, Sayre LM (2003) Model studies on protein side chain modification by 4-oxo-2-nonenal. Chem Res Toxicol 16:512–523PubMedCrossRef
Zurück zum Zitat Zimmer M, Ebert BL, Neil C et al (2008) Small-molecule inhibitors of HIF-2a translation link its 5′UTR iron-responsive element to oxygen sensing. Mol Cell 32:838–848PubMedCrossRef Zimmer M, Ebert BL, Neil C et al (2008) Small-molecule inhibitors of HIF-2a translation link its 5′UTR iron-responsive element to oxygen sensing. Mol Cell 32:838–848PubMedCrossRef
Metadaten
Titel
Brain iron metabolism and its perturbation in neurological diseases
Publikationsdatum
01.03.2011
Erschienen in
Journal of Neural Transmission / Ausgabe 3/2011
Print ISSN: 0300-9564
Elektronische ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-010-0470-z

Weitere Artikel der Ausgabe 3/2011

Journal of Neural Transmission 3/2011 Zur Ausgabe

Basic Neurosciences, Genetics and Immunology - Original Article

Active cortical innervation protects striatal neurons from slow degeneration in culture

Editorial

Editorial

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.