Skip to main content

Advertisement

Log in

The role of glutamate and its receptors in multiple sclerosis

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Glutamate is an excitatory neurotransmitter of the central nervous system, which has a central role in a complex communication network established between neurons, astrocytes, oligodendrocytes, and microglia. Multiple abnormal triggers such as energy deficiency, oxidative stress, mitochondrial dysfunction, and calcium overload can lead to abnormalities in glutamate signaling. Thus, the disturbance of glutamate homeostasis could affect practically all physiological functions and interactions of brain cells, leading to excitotoxicity. Excitotoxicity is the pathological process by which nerve cells are damaged or killed by excessive stimulation by glutamate. Although neuron degeneration and death are the ultimate consequences of multiple sclerosis (MS), it is now widely accepted that alterations in the function of surrounding glial cells are key features in the progression of the disease. The present knowledge raise the possibility that the modulation of glutamate release and transport, as well as receptors blockade or glutamate metabolism modulation, might be relevant targets for the development of future therapeutic interventions in MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aarum J, Sandberg K, Haeberlein SL, Persson MA (2003) Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci USA 100:15983–15988

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abbott NJ (2000) Inflammatory mediators and modulation of bloodbrain barrier permeability. Cell Mol Neurobiol 20:131–147

    CAS  PubMed  Google Scholar 

  • Agulhon C, Fiacco TA, McCarthy KD (2010) Hippocampal short- and longterm plasticity are not modulated by astrocyte Ca2+ signaling. Science 327:1250–1254

    CAS  PubMed  Google Scholar 

  • Alix JJ, Domingues AM (2011) White matter synapses: form, function, and dysfunction. Neurology 76:397–404

    PubMed  Google Scholar 

  • Allen M, Zou F, Chai HS, Younkin CS, Miles R, Nair AA, Crook JE, Pankratz VS, Carrasquillo MM, Rowley CN, Nguyen T, Ma L, Malphrus KG, Bisceglio G, Ortolaza AI, Palusak R, Middha S, Maharjan S, Georgescu C, Schultz D, Rakhshan F, Kolbert CP, Jen J, Sando SB, Aasly JO, Barcikowska M, Uitti RJ, Wszolek ZK, Ross OA, Petersen RC, Graff-Radford NR, Dickson DW, Younkin SG, Ertekin-Taner N (2012) Glutathione S-transferase omega genes in Alzheimer and Parkinson disease risk, age-at-diagnosis and brain gene expression: an association study with mechanistic implications. Mol Neurodegener 7:13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ames AI (2000) CNS energy metabolism as related to function. Brain Res Brain Res Rev 34:42–68

    CAS  PubMed  Google Scholar 

  • Bagasra O, Michaels FH, Zheng YM, Bobroski LE, Spitsin SV, Fu ZF (1995) Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis. Proc Natl Acad Sci USA 92(26):12041–12045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bender LM, Morgan MJ, Thomas LR, Liu ZG, Thorburn A (2005) The adaptor protein TRADD activates distinct mechanisms of apoptosis from the nucleus and the cytoplasm. Cell Death Differ 12:473–481

    CAS  PubMed  Google Scholar 

  • Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76(2):77–98

    CAS  PubMed  Google Scholar 

  • Bogaert L, Scheller D, Moonen J, Sarre S, Smolders I, Ebinger G, Michotte Y (2000) Neurochemical changes and laser Doppler flowmetry in the endothelin-1 rat model for focal cerebral ischemia. Brain Res 887:266–275

    CAS  PubMed  Google Scholar 

  • Bolton C, Paul C (2006) Glutamate receptors in neuroinflammatory demyelinating disease. Mediat Inflamm 2:93684

    Google Scholar 

  • Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25(34):4647–4662

    CAS  PubMed  Google Scholar 

  • Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, Bird ED, Beal MF (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 41:646–653

    CAS  PubMed  Google Scholar 

  • Burdo J, Dargusch R, Schubert D (2006) Distribution of the cystine/glutamate antiporter system xc- in the brain, kidney, and duodenum. J Histochem Cytochem 54:549–557

    CAS  PubMed  Google Scholar 

  • Butovsky O, Landa G, Kunis G, Ziv Y, Avidan H, Greenberg N (2006) Induction and blockage of oligodendrogenesis by differently activated microglia in an animal model of multiple sclerosis. J Clin Invest 116:905–915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Centonze D, Muzio L, Rossi S, Cavasinni F, De Chiara V, Bergami A (2009) Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J Neurosci 29:3442–3452

    CAS  PubMed  Google Scholar 

  • Centonze D, Muzio L, Rossi S, Furlan R, Bernardi G, Martino G (2010) The link between inflammation, synaptic transmission and neurodegeneration in multiple sclerosis. Cell Death Differ 17:1083–1091

    CAS  PubMed  Google Scholar 

  • Choi IY, Lim JH, Kim C, Song HY, Ju C, Kim WK (2013) 4-Hydroxy-2(E)-nonenal facilitates NMDA-induced neurotoxicity via triggering mitochondrial permeability transition pore opening and mitochondrial calcium overload. Exp Neurobiol 22(3):200–207

    PubMed  PubMed Central  Google Scholar 

  • Chung RS, McCormack GH, King AE, West AK, Vickers JK (2005) Glutamate induces rapid loss of axonal neurofilament proteins from cortical neurons in vitro. Exp Neurol 193:481–488

    CAS  PubMed  Google Scholar 

  • Cianfoni A, Niku S, Imbesi SG (2007) Metabolite findings in tumefactive demyelinating lesions utilizing short echo time proton magnetic resonance spectroscopy. AJNR Am J Neuroradiol 28:272–277

    CAS  PubMed  Google Scholar 

  • Collard CD, Park KA, Montalto MC, Alapati S, Buras JA, Stahl GL, Colgan SP (2002) Neutrophil-derived glutamate regulates vascular endothelial barrier function. J Biol Chem 277:14801–14811

    CAS  PubMed  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105

    CAS  PubMed  Google Scholar 

  • Decoursey TE, Ligeti E (2005) Regulation and termination of NADPH oxidase activity. Cell Mol Life Sci 62(19–20):2173–2193

    CAS  PubMed  Google Scholar 

  • Degos V, Peineau P, Kaindl AM, Sigaut S, Favrais G, Plaisant F, Teissier N, Gouadon E, Lombet A, Saliba E, Collingridge GL, Maze M, Nicoletti F, Heijnen C, Mantz J, Kavelaars A, Gressens P (2013) G protein-coupled receptor kinase 2 and group I metabotropic glutamate receptors mediate inflammation-induced sensitization to excitotoxic neurodegeneration. Ann Neurol 73(5):667–678

    CAS  PubMed  Google Scholar 

  • Dempsey RJ, Baskaya MK, Dogan A (2000) Attenuation of brain edema, blood-brain barrier breakdown, and injury volume by ifenprodil, a polyamine-site N-methyl-d-aspartate receptor antagonist, after experimental traumatic brain injury in rats. Neurosurgery 47:399–404

    CAS  PubMed  Google Scholar 

  • Domercq M, Sánchez-Gómez MV, Sherwin C, Etxebarria E, Fern R, Matute C (2007) System x c and glutamate transporter inhibition mediates microglial toxicity to oligodendrocytes. J Immunol 178:6549–6556

    CAS  PubMed  Google Scholar 

  • Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, Gudz T, Maclin WB, Lewis DA, Fox RJ, Rudick R, Mirnics K, Trapp BD (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 59(3):478–489

    CAS  PubMed  Google Scholar 

  • Fang J, Han D, Hong J, Tan Q, Tian Y (2012) The chemokine, macrophage inflammatory protein-2γ, reduces the expression of glutamate transporter-1 on astrocytes and increases neuronal sensitivity to glutamate excitotoxicity. J Neuroinflammation 9:267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farooqui T, Farooqui AA (2009) Aging: an important factor for the pathogenesis of neurodegenerative diseases. Mech Ageing Dev 130:203–215

    CAS  PubMed  Google Scholar 

  • Fiebiger SM, Bros H, Grobosch T, Janssen A, Chanvillard C, Paul F, Dörr J, Millward JM, Infante-Duarte C (2013) The antioxidant idebenone fails to prevent or attenuate chronic experimental autoimmune encephalomyelitis in the mouse. J Neuroimmunol 262:66–71

    CAS  PubMed  Google Scholar 

  • Floden AM, Li S, Combs CK (2005) Beta-amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor alpha and NMDA receptors. J Neurosci 25:2566–2575

    CAS  PubMed  Google Scholar 

  • Forte M, Gold BG, Marracci G, Chaudhary P, Basso E, Johnsen D, Yu X, Fowlkes J, Rahder M, Stem K, Bernardi P, Bourdette D (2007) Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Proc Natl Acad Sci USA 104:7558–7563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frigo M, Cogo MG, Fusco ML, Gardinetti M, Frigeni B (2012) Glutamate and multiple sclerosis. Curr Med Chem 19(9):1295–1299

    CAS  PubMed  Google Scholar 

  • Gehrmann J, Banati RB (1995) Microglial turnover in the injured CNS: activated microglia undergo delayed DNA fragmentation following peripheral nerve injury. J Neuropathol Exp Neurol 54:680–688

    CAS  PubMed  Google Scholar 

  • Gray E, Rice C, Nightingale H, Ginty M, Hares K, Kemp K, Cohen N, Love S, Scolding N, Wilkins A (2013) Accumulation of cortical hyperphosphorylated neurofilaments as a marker of neurodegeneration in multiple sclerosis. Mult Scler J 19(2):153–161

    Google Scholar 

  • Gurwitz D, Kloog Y (1998) Peroxynitrite generation might explain elevated glutamate and aspartate levels in multiple sclerosis cerebrospinal fluid. Eur J Clin Invest 28(9):760–761

    CAS  PubMed  Google Scholar 

  • Hauser DN, Cookson MR (2011) Astrocytes in Parkinson’s disease and DJ-1. J Neurochem 117:357–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Erdmann N, Peng H, Zhao Y, Zheng J (2005) The role of TNF related apoptosis-inducing ligand in neurodegenerative diseases. Cell Mol Immunol 2:113–122

    CAS  PubMed  Google Scholar 

  • Imai F, Suzuki H, Oda J, Ninomiya T, Ono K, Sano H, Sawada M (2007) Neuroprotective effect of exogenous microglia in global brain ischemia. J Cereb Blood Flow Metab 27(3):488–500

    CAS  PubMed  Google Scholar 

  • Julio-Pieper M, Flor PJ, Dinan TG, Cryan JF (2011) Exciting times beyond the brain: metabotropic glutamate receptors in peripheral and non-neural tissues. Pharmacol Rev 63:35–58

    CAS  PubMed  Google Scholar 

  • Kaltsonoudis E, Voulgari PV, Konitsiotis S, Drosos AA (2014) Demyelination and other neurological adverse events after anti-TNF therapy. Autoimmun Rev 13:54–58

    CAS  PubMed  Google Scholar 

  • Kanai Y, Trotti D, Nussberger S, Hediger MA (1997) The high affinity glutamate transporter family: structure, function and physiological relevance. In: Reith MEA (ed) Neurotransmitter transporters: structure, function, and regulation. Humana Press, Totowa, NJ, pp 171–214

    Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87(1):99–163

    CAS  PubMed  Google Scholar 

  • Kumar P, Kalonia H, Kumar A (2011) Role of LOX/COX pathways in 3-nitropropionic acid induced Huntington’s disease-like symptoms in rats: protective effect of licofelone. Br J Pharmacol 164(2b):644–654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Kalonia H, Kumar A (2012) Possible GABAergic mechanism in the neuroprotective effect of gabapentin and lamotrigine against 3-nitropropionic acid induced neurotoxicity. Eur J Pharmacol 674(2–3):265–274

    CAS  PubMed  Google Scholar 

  • Li JM, Fan LM, Christie MR, Shah AM (2005) Acute tumor necrosis factor alpha signaling via NADPH oxidase in microvascular endothelial cells: role of p47phox phosphorylation and binding to TRAF4. Mol Cell Biol 25(6):2320–2330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim SY, Constantinescu CS (2010) TNF-α: a paradigm of paradox and complexity in multiple sclerosis and its animal models. Open Autoimmun J 2:160–170

    CAS  Google Scholar 

  • Lipton SA (2008) NMDA receptor activity regulates transcription of antioxidant pathways. Nat Neurosci 11(4):381–382

    CAS  PubMed  Google Scholar 

  • Ljubisavljevic S, Stojanovic I, Pavlovic D, Milojkovic M, Pavlovic D, Vojinovic S, Sokolovic D, Stevanovic I (2012) Correlation of nitric oxide levels in the cerebellum and spinal cord of experimental autoimmune encephalomyelitis rats with clinical symptoms. Acta Neurobiol Exp (Wars) 72:33–39

    Google Scholar 

  • Love S (1999) Oxidative stress in brain ischemia. Brain Pathol 9:119–131

    CAS  PubMed  Google Scholar 

  • Lu F, Selak M, O’Connor J, Croul S, Lorenzana C, Butunoi C, Kalman B (2000) Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J Neurol Sci 177:95–103

    CAS  PubMed  Google Scholar 

  • Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717

    CAS  PubMed  Google Scholar 

  • Mahad D, Ziabreva I, Lassmann H, Turnbull D (2008) Mitochondrial defects in acute multiple sclerosis lesions. Brain 131:1722–1735

    PubMed  PubMed Central  Google Scholar 

  • Mahad DJ, Ziabreva I, Campbell G, Lax N, White K, Hanson PS, Lassmann H, Turnbull DM (2009) Mitochondrial changes within axons in multiple sclerosis. Brain 132:1161–1174

    PubMed  PubMed Central  Google Scholar 

  • Mahler A, Steiniger J, Bock M, Brandt AU, Haas V, Boschmann M, Paul F (2012) Is metabolic flexibility altered in multiple sclerosis patients? PLoS One 7(8):e43675

    PubMed  PubMed Central  Google Scholar 

  • Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Prac Neurol 2:679–689

    CAS  Google Scholar 

  • Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15

    CAS  PubMed  Google Scholar 

  • Mattle HP, Lienert C, Greeve I (2004) Uric acid and multiple sclerosis [in German]. Ther Umsch 61(9):553–555

    CAS  PubMed  Google Scholar 

  • Matute C (2006) Oligodendrocyte NMDA receptors: a novel therapeutic target. Trends Mol Med 12:289–292

    CAS  PubMed  Google Scholar 

  • Mecocci P, MacGarvey U, Kaufman AE, Koontz D, Shoffner JM, Wallace DC, Beal MF (1993) Oxidative damage to mitochondrial DNA shows marked age dependent increases in human brain. Ann Neurol 34:609–616

    CAS  PubMed  Google Scholar 

  • Melzer N, Meuth SG, Torres-Salazar D, Bittner S, Zozulya AL, Weidenfeller C, Kotsiari A, Stangel M, Fahlke C, Wiendl H (2008) A beta-lactam antibiotic dampens excitotoxic inflammatory CNS damage in a mouse model of multiple sclerosis. PLoS One 3:e3149

    PubMed  PubMed Central  Google Scholar 

  • Neumann H (2001) Control of glial immune function by neurons. Glia 36(2):191–199

    CAS  PubMed  Google Scholar 

  • Newcombe J, Uddin A, Dove R, Patel B, Turski L, Nishizawa Y (2008) Glutamate receptor expression in multiple sclerosis lesions. Brain Pathol 18:52–61

    PubMed  Google Scholar 

  • Newsholme EA, Calder PC (1997) The proposed role of glutamine in some cells of the immune system and speculative consequences for the whole animal. Nutrition 13(7–8):728–730

    CAS  PubMed  Google Scholar 

  • Nicholls DG (2004) Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures. Curr Mol Med 4:149–177

    CAS  PubMed  Google Scholar 

  • Norenberg MD, Rao KVR (2007) The mitochondrial permeability transition in neurologic disease. Neurochem Int 50(7–8):983–997

    CAS  PubMed  Google Scholar 

  • Ohgoh M, Hanada T, Smith T, Hashimoto T, Ueno M, Yamanishi Y, Watanabe M, Nishizawa Y (2002) Altered expression of glutamate transporters in experimental autoimmune encephalomyelitis. J Neuroimmunol 125(1–2):170–178

    CAS  PubMed  Google Scholar 

  • Palmer GC (2001) Neuroprotection by NMDA receptor antagonists in a variety of neuropathologies. Curr Drug Targets 2:241–271

    CAS  PubMed  Google Scholar 

  • Pampliega O, Domercq M, Soria FN, Villoslada P, Rodríguez-Antigüedad A, Matute CJ (2011) Increased expression of cystine/glutamate antiporter in multiple sclerosis. J Neuroinflammation 8:63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perea G, Araque A (2010) Glia modulates synaptic transmission. Brain Res Rev 63(1–2):93–102

    CAS  PubMed  Google Scholar 

  • Piani D, Fontana A (1994) Involvement of the cystine transport system xc- in the macrophage-induced glutamate-dependent cytotoxicity to neurons. J Immunol 152(7):3578–3585

    CAS  PubMed  Google Scholar 

  • Pinteaux-Jones F, Sevastou IG, Fry VA, Heales S, Baker D, Pocock JM (2008) Myelin-induced microglial neurotoxicity can be controlled by microglial metabotropic glutamate receptors. J Neurochem 106(1):442–454

    CAS  PubMed  Google Scholar 

  • Pitt D, Werner P, Raine CS (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6:67–70

    CAS  PubMed  Google Scholar 

  • Rahn KA, Slusher BS, Kaplin AI (2012) Glutamate in CNS neurodegeneration and cognition and its regulation by GCPII inhibition. Curr Med Chem 19(9):1335–1345

    CAS  PubMed  Google Scholar 

  • Ribeiro FM, Paquet M, Cregan SP, Ferguson SS (2010) Group I metabotropic glutamate receptor signalling and its implication in neurological disease. CNS Neurol Disord Drug Targets 9:574–595

    CAS  PubMed  Google Scholar 

  • Rose JW, Hill KE, Watt HE, Carlson NG (2004) Inflammatory cell expression of cyclooxygenase-2 in the multiple sclerosis lesion. J Neuroimmunol 149(1–2):40–49

    CAS  PubMed  Google Scholar 

  • Rossi S, Motta C, Studer V, Barbieri F, Buttari F, Bergami A, Sancesario G, Bernardini S, De Angelis G, Martino G, Furlan R, Centonze D (2014) Tumor necrosis factor is elevated in progressive multiple sclerosis and causes excitotoxic neurodegeneration. Mult Scler 20(3):304–312. doi:10.1177/1352458513498128

    Google Scholar 

  • Sarchielli P, Greco L, Floridi A, Floridi A, Gallai V (2003) Excitatory amino acids and multiple sclerosis: evidence from cerebrospinal fluid. Arch Neurol 60:1082–1088

    PubMed  Google Scholar 

  • Sendrowski K, Rusak M, Sobaniec P, Iłendo E, Dąbrowska M, Boćkowski L, Koput A, Sobaniec W (2013) Study of the protective effect of calcium channel blockers against neuronal damage induced by glutamate in cultured hippocampal neurons. Pharmacol Rep 65(3):730–746

    PubMed  Google Scholar 

  • Sharp CD, Hines I, Houghton J, Warren A, Jackson TH, Jawahar A, Nanda A, Elrod JW, Long A, Chi A, Minagar A, Alexander JS (2003) Glutamate causes a loss in human cerebral endothelial barrier integrity through activation of NMDA receptor. Am J Physiol Heart Circ Physiol 285:H2592–H2598

    CAS  PubMed  Google Scholar 

  • Sinnecker T, Mittelstaedt P, Dörr J, Pfueller CF, Harms L, Niendorf T, Paul F, Wuerfel J (2012) Multiple sclerosis lesions and irreversible brain tissue damage a comparative ultrahigh-field strength magnetic resonance imaging study. Arch Neurol 69(6):739–745

    PubMed  Google Scholar 

  • Steinert JR, Chernova T, Forsythe ID (2010) Nitric oxide signaling in brain function, dysfunction, and dementia. Neuroscientist 16:435–452

    CAS  PubMed  Google Scholar 

  • Stojanovic I, Vojinovic S, Ljubisavljevic S, Pavlovic R, Basic J, Pavlovic D, Ilic A, Cvetkovic T, Stukalov M (2012) INF-β1b therapy modulates l-arginine and nitric oxide metabolism in patients with relapse remittens multiple sclerosis. J Neurol Sci 323(1–2):187–192

    CAS  PubMed  Google Scholar 

  • Sulkowski G, Dąbrowska-Bouta B, Chalimoniuk M, Strużyńska (2013) Effects of antagonists of glutamate receptors on pro-inflammatory cytokines in the brain cortex of rats subjected to experimental autoimmune encephalomyelitis. J Neuroimmunol 261(1–2):67–76

    CAS  PubMed  Google Scholar 

  • Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T, Suzumura A (2006) Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281:21362–21368

    CAS  PubMed  Google Scholar 

  • Tilleux S, Hermans E (2007) Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res 85:2059–2070

    CAS  PubMed  Google Scholar 

  • Tolosa L, Caraballo-Miralles V, Olmos G, Lladó J (2011) TNF-α potentiates glutamate-induced spinal cord motoneuron death via NF-κB. Mol Cell Neurosci 46(1):176–186

    CAS  PubMed  Google Scholar 

  • Trapp BD, Stys PK (2009) Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol 8:280–291

    CAS  PubMed  Google Scholar 

  • Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vallejo-Illarramendi A, Domercq M, Pérez-Cerdá F, Ravid R, Matute C (2006) Increased expression and function of glutamate transporters in multiple sclerosis. Neurobiol Dis 21:154–164

    CAS  PubMed  Google Scholar 

  • van Horssen J, Witte ME, Ciccarelli O (2012) The role of mitochondria in axonal degeneration and tissue repair in MS. Mult Scler J 18(8):1058–1067

    Google Scholar 

  • van Oosten BW, Barkhof F, Truyen L, Boringa JB, Bertelsmann FW, von Blomberg BM, Woody JN, Hartung HP, Polman CH (1996) Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology 47:1531–1534

    PubMed  Google Scholar 

  • Vercellino M, Merola A, Piacentino C, Votta B, Capello E, Mancardi GL (2007) Altered glutamate reuptake in relapsing-remitting and secondary progressive multiple sclerosis cortex: correlation with microglia infiltration, demyelination, and neuronal and synaptic damage. J Neuropathol Exp Neurol 66:732–739

    CAS  PubMed  Google Scholar 

  • Verkhratsky A (2010) Physiology of neuronal-glial networking. Neurochem Int 57:332–343

    CAS  PubMed  Google Scholar 

  • Veto S, Acs P, Bauer J, Berente Z, Setalo G Jr, Borgulya G, Sumegi B, Komoly S, Gallyas F Jr, Illes Z (2010) Inhibiting poly(ADP-ribose) polymerase: a potential therapy against oligodendrocyte death. Brain 133(Pt 3):822–834

    PubMed  PubMed Central  Google Scholar 

  • Virgili N, Mancera P, Wappenhans B, Sorrosal G, Biber K, Pugliese M, Espinosa-Parrilla JF (2013) KATP channel opener diazoxide prevents neurodegeneration: a new mechanism of action via antioxidative pathway activation. PLoS ONE 8(9):e75189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walton NM, Sutter BM, Laywell ED, Levkoff LH, Kearns SM, Marshall GP 2nd, Scheffler B, Steindler DA (2006) Microglia instruct subventricular zone neurogenesis. Glia 54:815–825

    PubMed  Google Scholar 

  • West AR, Tseng KY (2011) Nitric oxide-soluble guanylyl cyclase-cyclic GMP signaling in the striatum: new targets for the treatment of Parkinson’s disease? Front Syst Neurosci 5:1–55

    Google Scholar 

  • Willard SS, Koochekpour S (2013) Glutamate, glutamate receptors, and downstream signaling pathways. Int J Biol Sci 9(9):948–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Witte ME, Bø L, Rodenburg RJ, Belien JA, Musters R, Hazes T, Wintjes LT, Smeitink JA, Geurts JJ, De Vries HE, van der Valk P, van Horssen J (2009) Enhanced number and activity of mitochondria in multiple sclerosis lesions. J Pathol 219(2):193–204

    PubMed  Google Scholar 

  • Witte ME, Geurts JJG, de Vries HE, van der Valk P, van Horssen J (2010) Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration? Mitochondrion 10:411–418

    CAS  PubMed  Google Scholar 

  • Witte ME, Nijland PG, Drexhage JAR, Gerritsen W, Geerts D, van het Hof B, de Reijerkerk A, Vries HE, van der Valk P, van Horssen J (2013) Reduced expression of PGC-1a partly underlies mitochondrial changes and correlates with neuronal loss in multiple sclerosis cortex. Acta Neuropathol 125:231–243

    CAS  PubMed  Google Scholar 

  • Yacoubian TA, Slone SR, Harrington AJ, Hamamichi S, Schieltz JM, Caldwell KA (2010) Differential neuroprotective effects of 14-3-3 proteins in models of Parkinson’s disease. Cell Death Dis 1:e2

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yawata I, Takeuchi H, Doi Y, Liang J, Mizuno T, Suzumura A (2008) Macrophage-induced neurotoxicity is mediated by glutamate and attenuated by glutaminase inhibitors and gap junction inhibitors. Life Sci 82(21–22):1111–1116

    CAS  PubMed  Google Scholar 

  • Ye L, Huang Y, Zhao L, Li Y, Sun L, Zhou Y, Qian G, Zheng JC (2013) IL-1β and TNF-α induce neurotoxicity through glutamate production: a potential role of glutaminase. J Neurochem 125:897–908

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Bausano B, Pike BR, Newcomb-Fernandez JK, Wang KK, Shohami E, Ringger NC, DeFord SM, Anderson DK, Hayes RL (2001) TNF-alpha stimulates caspase-3 activation and apoptotic cell death in primary septo-hippocampal cultures. J Neurosci Res 64(2):121–131

    CAS  PubMed  Google Scholar 

  • Zindler E, Zipp F (2010) Neuronal injury in chronic CNS inflammation. Best Pract Res Clin Anaesthesiol 24(4):551–562

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This paper was supported by The Ministry of Education and Science of the Republic of Serbia under the project number 41018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana R. Stojanovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stojanovic, I.R., Kostic, M. & Ljubisavljevic, S. The role of glutamate and its receptors in multiple sclerosis. J Neural Transm 121, 945–955 (2014). https://doi.org/10.1007/s00702-014-1188-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-014-1188-0

Keywords

Navigation