Skip to main content

Advertisement

Log in

Type-I interferon pathway in neuroinflammation and neurodegeneration: focus on Alzheimer’s disease

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Past research in Alzheimer’s disease (AD) has largely been driven by the amyloid hypothesis; the accompanying neuroinflammation seen in AD has been assumed to be consequential and not disease modifying or causative. However, recent data from both clinical and preclinical studies have established that the immune-driven neuroinflammation contributes to AD pathology. Key evidence for the involvement of neuroinflammation in AD includes enhanced microglial and astroglial activation in the brains of AD patients, increased pro-inflammatory cytokine burden in AD brains, and epidemiological evidence that chronic non-steroidal anti-inflammatory drug use prior to disease onset leads to a lower incidence of AD. Identifying critical mediators controlling this neuroinflammation will prove beneficial in developing anti-inflammatory therapies for the treatment of AD. The type-I interferons (IFNs) are pleiotropic cytokines that control pro-inflammatory cytokine secretion and are master regulators of the innate immune response that impact on disorders of the central nervous system. This review provides evidence that the type-I IFNs play a critical role in the exacerbation of neuroinflammation and actively contribute to the progression of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akassoglou K, Probert L, Kontogeorgos G, Kollias G (1997) Astrocyte-specific but not neuron-specific transmembrane TNF triggers inflammation and degeneration in the central nervous system of transgenic mice. J Immunol 158(1):438–445

    CAS  PubMed  Google Scholar 

  • Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801. doi:10.1016/j.cell.2006.02.015

    Article  CAS  PubMed  Google Scholar 

  • Alexander WS, Starr R, Fenner JE, Scott CL, Handman E, Sprigg NS, Corbin JE, Cornish AL, Darwiche R, Owczarek CM, Kay TW, Nicola NA, Hertzog PJ, Metcalf D, Hilton DJ (1999) SOCS1 is a critical inhibitor of interferon gamma signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell 98(5):597–608

    Article  CAS  PubMed  Google Scholar 

  • Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117(2):145–152

    Article  CAS  PubMed  Google Scholar 

  • Barton GM (2007) Viral recognition by Toll-like receptors. Semin Immunol 19(1):33–40. doi:10.1016/j.smim.2007.01.003

    Article  CAS  PubMed  Google Scholar 

  • Baruch K, Deczkowska A, David E, Castellano JM, Miller O, Kertser A, Berkutzki T, Barnett-Itzhaki Z, Bezalel D, Wyss-Coray T, Amit I, Schwartz M (2014) Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science (New York, NY) 346(6205):89–93. doi:10.1126/science.1252945

    Article  CAS  Google Scholar 

  • Blasko I, Marx F, Steiner E, Hartmann T, Grubeck-Loebenstein B (1999) TNFalpha plus IFNgamma induce the production of Alzheimer beta-amyloid peptides and decrease the secretion of APPs. FASEB J 13(1):63–68

    Article  CAS  PubMed  Google Scholar 

  • Borchelt DR, Ratovitski T, van Lare J, Lee MK, Gonzales V, Jenkins NA, Copeland NG, Price DL, Sisodia SS (1997) Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19(4):939–945

    Article  CAS  PubMed  Google Scholar 

  • Campbell IL, Krucker T, Steffensen S, Akwa Y, Powell HC, Lane T, Carr DJ, Gold LH, Henriksen SJ, Siggins GR (1999) Structural and functional neuropathology in transgenic mice with CNS expression of IFN-alpha. Brain Res 835(1):46–61

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarty P, Li A, Ceballos-Diaz C, Eddy JA, Funk CC, Moore B, DiNunno N, Rosario AM, Cruz PE, Verbeeck C, Sacino A, Nix S, Janus C, Price ND, Das P, Golde TE (2015) IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior. Neuron 85(3):519–533. doi:10.1016/j.neuron.2014.11.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherry JD, Olschowka JA, O’Banion MK (2015) Arginase 1+ microglia reduce Abeta plaque deposition during IL-1beta-dependent neuroinflammation. J Neuroinflammation 12:203. doi:10.1186/s12974-015-0411-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Crow YJ, Hayward BE, Parmar R, Robins P, Leitch A, Ali M, Black DN, van Bokhoven H, Brunner HG, Hamel BC, Corry PC, Cowan FM, Frints SG, Klepper J, Livingston JH, Lynch SA, Massey RF, Meritet JF, Michaud JL, Ponsot G, Voit T, Lebon P, Bonthron DT, Jackson AP, Barnes DE, Lindahl T (2006a) Mutations in the gene encoding the 3′–5′ DNA exonuclease TREX1 cause Aicardi–Goutieres syndrome at the AGS1 locus. Nat Genet 38(8):917–920

    Article  CAS  PubMed  Google Scholar 

  • Crow YJ, Leitch A, Hayward BE, Garner A, Parmar R, Griffith E, Ali M, Semple C, Aicardi J, Babul-Hirji R, Baumann C, Baxter P, Bertini E, Chandler KE, Chitayat D, Cau D, Dery C, Fazzi E, Goizet C, King MD, Klepper J, Lacombe D, Lanzi G, Lyall H, Martinez-Frias ML, Mathieu M, McKeown C, Monier A, Oade Y, Quarrell OW, Rittey CD, Rogers RC, Sanchis A, Stephenson JB, Tacke U, Till M, Tolmie JL, Tomlin P, Voit T, Weschke B, Woods CG, Lebon P, Bonthron DT, Ponting CP, Jackson AP (2006b) Mutations in genes encoding ribonuclease H2 subunits cause Aicardi–Goutieres syndrome and mimic congenital viral brain infection. Nat Genet 38(8):910–916

    Article  CAS  PubMed  Google Scholar 

  • Cunningham C, Campion S, Teeling J, Felton L, Perry VH (2007) The sickness behaviour and CNS inflammatory mediator profile induced by systemic challenge of mice with synthetic double-stranded RNA (poly I:C). Brain Behav Immun 21(4):490–502

    Article  CAS  PubMed  Google Scholar 

  • de Weerd NA, Nguyen T (2012) The interferons and their receptors—distribution and regulation. Immunol Cell Biol 90(5):483–491. doi:10.1038/icb.2012.9

    Article  PubMed  Google Scholar 

  • de Weerd NA, Vivian JP, Nguyen TK, Mangan NE, Gould JA, Braniff SJ, Zaker-Tabrizi L, Fung KY, Forster SC, Beddoe T, Reid HH, Rossjohn J, Hertzog PJ (2013) Structural basis of a unique interferon-beta signaling axis mediated via the receptor IFNAR1. Nat Immunol 14(9):901–907. doi:10.1038/ni.2667

    Article  PubMed  Google Scholar 

  • Di Bona D, Rizzo C, Bonaventura G, Candore G, Caruso C (2012) Association between interleukin-10 polymorphisms and Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis 29(4):751–759. doi:10.3233/JAD-2012-111838

    PubMed  Google Scholar 

  • Downes CE, Crack PJ (2010) Neural injury following stroke: are Toll-like receptors the link between the immune system and the CNS? Br J Pharmacol 160(8):1872–1888. doi:10.1111/j.1476-5381.2010.00864.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eikelenboom P, Veerhuis R, Scheper W, Rozemuller AJ, van Gool WA, Hoozemans JJ (2006) The significance of neuroinflammation in understanding Alzheimer’s disease. J Neural Transm (Vienna) 113(11):1685–1695. doi:10.1007/s00702-006-0575-6

    Article  CAS  Google Scholar 

  • Ejlerskov P, Hultberg JG, Wang J, Carlsson R, Ambjorn M, Kuss M, Liu Y, Porcu G, Kolkova K, Friis Rundsten C, Ruscher K, Pakkenberg B, Goldmann T, Loreth D, Prinz M, Rubinsztein DC, Issazadeh-Navikas S (2015) Lack of neuronal IFN-beta-IFNAR causes Lewy body- and Parkinson’s disease-like dementia. Cell 163(2):324–339. doi:10.1016/j.cell.2015.08.069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faraco G, Iadecola C (2013) Hypertension: a harbinger of stroke and dementia. Hypertension 62(5):810–817. doi:10.1161/HYPERTENSIONAHA.113.01063

    Article  CAS  PubMed  Google Scholar 

  • Floden AM, Combs CK (2006) Beta-amyloid stimulates murine postnatal and adult microglia cultures in a unique manner. J Neurosci 26(17):4644–4648. doi:10.1523/JNEUROSCI.4822-05.2006

    Article  CAS  PubMed  Google Scholar 

  • Francois A, Rioux Bilan A, Quellard N, Fernandez B, Janet T, Chassaing D, Paccalin M, Terro F, Page G (2014) Longitudinal follow-up of autophagy and inflammation in brain of APPswePS1dE9 transgenic mice. J Neuroinflammation 11:139. doi:10.1186/s12974-014-0139-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Gough DJ, Messina NL, Clarke CJ, Johnstone RW, Levy DE (2012) Constitutive type I interferon modulates homeostatic balance through tonic signaling. Immunity 36(2):166–174. doi:10.1016/j.immuni.2012.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Group ADC, Bentham P, Gray R, Sellwood E, Hills R, Crome P, Raftery J (2008) Aspirin in Alzheimer’s disease (AD2000): a randomised open-label trial. Lancet Neurol 7(1):41–49. doi:10.1016/S1474-4422(07)70293-4

    Article  Google Scholar 

  • Group AR, Lyketsos CG, Breitner JC, Green RC, Martin BK, Meinert C, Piantadosi S, Sabbagh M (2007) Naproxen and celecoxib do not prevent AD in early results from a randomized controlled trial. Neurology 68(21):1800–1808. doi:10.1212/01.wnl.0000260269.93245.d2

    Article  Google Scholar 

  • Group AR, Martin BK, Szekely C, Brandt J, Piantadosi S, Breitner JC, Craft S, Evans D, Green R, Mullan M (2008) Cognitive function over time in the Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib. Arch Neurol 65(7):896–905. doi:10.1001/archneur.2008.65.7.nct70006

    Article  Google Scholar 

  • Guillot-Sestier MV, Doty KR, Gate D, Rodriguez J Jr, Leung BP, Rezai-Zadeh K, Town T (2015) Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuron 85(3):534–548. doi:10.1016/j.neuron.2014.12.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9(8):857–865. doi:10.1038/ni.1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40(2):140–155. doi:10.1002/glia.10161

    Article  PubMed  Google Scholar 

  • He P, Zhong Z, Lindholm K, Berning L, Lee W, Lemere C, Staufenbiel M, Li R, Shen Y (2007) Deletion of tumor necrosis factor death receptor inhibits amyloid beta generation and prevents learning and memory deficits in Alzheimer’s mice. J Cell Biol 178(5):829–841. doi:10.1083/jcb.200705042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14(7):463–77

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493(7434):674–678. doi:10.1038/nature11729

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405. doi:10.1016/S1474-4422(15)70016-5

    Article  CAS  PubMed  Google Scholar 

  • Hertzog PJ, Hwang SY, Kola I (1994) Role of interferons in the regulation of cell proliferation, differentiation, and development. Mol Reprod Dev 39(2):226–232. doi:10.1002/mrd.1080390216

    Article  CAS  PubMed  Google Scholar 

  • Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, Shimada N, Ohba Y, Takaoka A, Yoshida N, Taniguchi T (2005) IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434(7034):772–777

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C (2014) Hypertension and dementia. Hypertension 64(1):3–5. doi:10.1161/HYPERTENSIONAHA.114.03040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imbimbo BP, Solfrizzi V, Panza F (2010) Are NSAIDs useful to treat Alzheimer’s disease or mild cognitive impairment? Front Aging Neurosci. doi:10.3389/fnagi.2010.00019

    PubMed  PubMed Central  Google Scholar 

  • in t’ Veld BA, Ruitenberg A, Hofman A, Launer LJ, van Duijn CM, Stijnen T, Breteler MM, Stricker BH (2001) Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med 345(21):1515–1521. doi:10.1056/NEJMoa010178

    Article  PubMed  Google Scholar 

  • Isaacs A, Lindenmann J (1957) Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 147(927):258–267

    Article  CAS  PubMed  Google Scholar 

  • Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, Shaw LM, Vemuri P, Wiste HJ, Weigand SD, Lesnick TG, Pankratz VS, Donohue MC, Trojanowski JQ (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12(2):207–216. doi:10.1016/S1474-4422(12)70291-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai T, Akira S (2006) Innate immune recognition of viral infection. Nat Immunol 7(2):131–137. doi:10.1038/ni1303

    Article  CAS  PubMed  Google Scholar 

  • Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, Wieghofer P, Heinrich A, Riemke P, Holscher C, Muller DN, Luckow B, Brocker T, Debowski K, Fritz G, Opdenakker G, Diefenbach A, Biber K, Heikenwalder M, Geissmann F, Rosenbauer F, Prinz M (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16(3):273–280. doi:10.1038/nn.3318

    Article  CAS  PubMed  Google Scholar 

  • Kiyota T, Okuyama S, Swan RJ, Jacobsen MT, Gendelman HE, Ikezu T (2010) CNS expression of anti-inflammatory cytokine interleukin-4 attenuates Alzheimer’s disease-like pathogenesis in APP+PS1 bigenic mice. FASEB J 24(8):3093–3102. doi:10.1096/fj.10-155317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiyota T, Ingraham KL, Swan RJ, Jacobsen MT, Andrews SJ, Ikezu T (2012) AAV serotype 2/1-mediated gene delivery of anti-inflammatory interleukin-10 enhances neurogenesis and cognitive function in APP+PS1 mice. Gene Ther 19(7):724–733. doi:10.1038/gt.2011.126

    Article  CAS  PubMed  Google Scholar 

  • Kocur M, Schneider R, Pulm AK, Bauer J, Kropp S, Gliem M, Ingwersen J, Goebels N, Alferink J, Prozorovski T, Aktas O, Scheu S (2015) IFNbeta secreted by microglia mediates clearance of myelin debris in CNS autoimmunity. Acta Neuropathol Commun 3:20. doi:10.1186/s40478-015-0192-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Kummer MP, Hermes M, Delekarte A, Hammerschmidt T, Kumar S, Terwel D, Walter J, Pape HC, Konig S, Roeber S, Jessen F, Klockgether T, Korte M, Heneka MT (2011) Nitration of tyrosine 10 critically enhances amyloid beta aggregation and plaque formation. Neuron 71(5):833–844. doi:10.1016/j.neuron.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  • Latta CH, Brothers HM, Wilcock DM (2015) Neuroinflammation in Alzheimer’s disease; a source of heterogeneity and target for personalized therapy. Neuroscience 302:103–111. doi:10.1016/j.neuroscience.2014.09.061

    Article  CAS  PubMed  Google Scholar 

  • Lee MN, Ye C, Villani AC, Raj T, Li W, Eisenhaure TM, Imboywa SH, Chipendo PI, Ran FA, Slowikowski K, Ward LD, Raddassi K, McCabe C, Lee MH, Frohlich IY, Hafler DA, Kellis M, Raychaudhuri S, Zhang F, Stranger BE, Benoist CO, De Jager PL, Regev A, Hacohen N (2014) Common genetic variants modulate pathogen-sensing responses in human dendritic cells. Science (New York, NY) 343(6175):1246980. doi:10.1126/science.1246980

    Article  Google Scholar 

  • Li W, Qian X, Teng H, Ding Y, Zhang L (2014) Association of interleukin-4 genetic polymorphisms with sporadic Alzheimer’s disease in Chinese Han population. Neurosci Lett 563:17–21. doi:10.1016/j.neulet.2014.01.019

    Article  CAS  PubMed  Google Scholar 

  • Licastro F, Carbone I, Ianni M, Porcellini E (2011) Gene signature in Alzheimer’s disease and environmental factors: the virus chronicle. J Alzheimers Dis 27(4):809–817. doi:10.3233/JAD-2011-110755

    CAS  PubMed  Google Scholar 

  • Licastro F, Raschi E, Carbone I, Porcellini E (2015) Variants in antiviral genes are risk factors for cognitive decline and dementia. J Alzheimers Dis 46(3):655–663. doi:10.3233/JAD-142718

    Article  CAS  PubMed  Google Scholar 

  • Lim JE, Kou J, Song M, Pattanayak A, Jin J, Lalonde R, Fukuchi K (2011) MyD88 deficiency ameliorates beta-amyloidosis in an animal model of Alzheimer’s disease. Am J Pathol 179(3):1095–1103. doi:10.1016/j.ajpath.2011.05.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luedecking EK, DeKosky ST, Mehdi H, Ganguli M, Kamboh MI (2000) Analysis of genetic polymorphisms in the transforming growth factor-beta1 gene and the risk of Alzheimer’s disease. Hum Genet 106(5):565–569

    Article  CAS  PubMed  Google Scholar 

  • Main BS, Zhang M, Brody KM, Ayton S, Frugier T, Steer D, Finkelstein D, Crack PJ, Taylor JM (2016a) Type-1 interferons contribute to the neuroinflammatory response and disease progression of the MPTP mouse model of Parkinson’s disease. Glia 64(9):1590–1604. doi:10.1002/glia.23028

    Article  PubMed  Google Scholar 

  • Main BS, Zhang M, Brody KM, Kirby FJ, Crack PJ, Taylor JM (2016b) Type-I interferons mediate the neuroinflammatory response and neurotoxicity induced by rotenone. J Neurochem. doi:10.1111/jnc.13940

    Google Scholar 

  • Manouchehrinia A, Constantinescu CS (2012) Cost-effectiveness of disease-modifying therapies in multiple sclerosis. Curr Neurol Neurosci Rep 12(5):592–600. doi:10.1007/s11910-012-0291-6

    Article  PubMed  Google Scholar 

  • Mesquita SD, Ferreira AC, Gao F, Coppola G, Geschwind DH, Sousa JC, Correia-Neves M, Sousa N, Palha JA, Marques F (2015) The choroid plexus transcriptome reveals changes in type I and II interferon responses in a mouse model of Alzheimer’s disease. Brain Behav Immun 49:280–292. doi:10.1016/j.bbi.2015.06.008

    Article  CAS  PubMed  Google Scholar 

  • Meuwissen ME, Schot R, Buta S, Oudesluijs G, Tinschert S, Speer SD, Li Z, van Unen L, Heijsman D, Goldmann T, Lequin MH, Kros JM, Stam W, Hermann M, Willemsen R, Brouwer RW, Van IWF, Martin-Fernandez M, de Coo I, Dudink J, de Vries FA, Bertoli Avella A, Prinz M, Crow YJ, Verheijen FW, Pellegrini S, Bogunovic D, Mancini GM (2016) Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J Exp Med 213(7):1163–1174. doi:10.1084/jem.20151529

    Article  PubMed  PubMed Central  Google Scholar 

  • Michaud JP, Richard KL, Rivest S (2011) MyD88-adaptor protein acts as a preventive mechanism for memory deficits in a mouse model of Alzheimer’s disease. Mol Neurodegener 6(1):5. doi:10.1186/1750-1326-6-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaud JP, Halle M, Lampron A, Theriault P, Prefontaine P, Filali M, Tribout-Jover P, Lanteigne AM, Jodoin R, Cluff C, Brichard V, Palmantier R, Pilorget A, Larocque D, Rivest S (2013) Toll-like receptor 4 stimulation with the detoxified ligand monophosphoryl lipid A improves Alzheimer’s disease-related pathology. Proc Natl Acad Sci USA 110(5):1941–1946. doi:10.1073/pnas.1215165110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minter MR, Main BS, Brody KM, Zhang M, Taylor JM, Crack PJ (2015) Soluble amyloid triggers a myeloid differentiation factor 88 and interferon regulatory factor 7 dependent neuronal type-1 interferon response in vitro. J Neuroinflammation 12:71. doi:10.1186/s12974-015-0263-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Minter MR, Moore Z, Zhang M, Brody KM, Jones NC, Shultz SR, Taylor JM, Crack PJ (2016a) Deletion of the type-1 interferon receptor in APPSWE/PS1DeltaE9 mice preserves cognitive function and alters glial phenotype. Acta Neuropathol Commun 4(1):72. doi:10.1186/s40478-016-0341-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Minter MR, Taylor JM, Crack PJ (2016b) The contribution of neuroinflammation to amyloid toxicity in Alzheimer’s disease. J Neurochem 136(3):457–474. doi:10.1111/jnc.13411

    Article  CAS  PubMed  Google Scholar 

  • Mosher KI, Wyss-Coray T (2014) Microglial dysfunction in brain aging and Alzheimer’s disease. Biochem Pharmacol 88(4):594–604. doi:10.1016/j.bcp.2014.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11(11):723–737. doi:10.1038/nri3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20. doi:10.1016/j.immuni.2014.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng CT, Mendoza JL, Garcia KC, Oldstone MB (2016) Alpha and beta type 1 interferon signaling: passage for diverse biologic outcomes. Cell 164(3):349–352. doi:10.1016/j.cell.2015.12.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel NS, Paris D, Mathura V, Quadros AN, Crawford FC, Mullan MJ (2005) Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. J Neuroinflammation 2(1):9. doi:10.1186/1742-2094-2-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5(5):375–386. doi:10.1038/nri1604

    Article  CAS  PubMed  Google Scholar 

  • Porcellini E, Carbone I, Ianni M, Licastro F (2010) Alzheimer’s disease gene signature says: beware of brain viral infections. Immun Ageing 7:16. doi:10.1186/1742-4933-7-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prehaud C, Megret F, Lafage M, Lafon M (2005) Virus infection switches TLR-3-positive human neurons to become strong producers of beta interferon. J Virol 79(20):12893–12904. doi:10.1128/JVI.79.20.12893-12904.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ransohoff RM (2016a) How neuroinflammation contributes to neurodegeneration. Science (New York, NY) 353(6301):777–783. doi:10.1126/science.aag2590

    Article  CAS  Google Scholar 

  • Ransohoff RM (2016b) A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 19(8):987–991. doi:10.1038/nn.4338

    Article  CAS  PubMed  Google Scholar 

  • Rho MB, Wesselingh S, Glass JD, McArthur JC, Choi S, Griffin J, Tyor WR (1995) A potential role for interferon-alpha in the pathogenesis of HIV-associated dementia. Brain Behav Immun 9(4):366–377. doi:10.1006/brbi.1995.1034

    Article  CAS  PubMed  Google Scholar 

  • Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE, Mayo L, Chao CC, Patel B, Yan R, Blain M, Alvarez JI, Kebir H, Anandasabapathy N, Izquierdo G, Jung S, Obholzer N, Pochet N, Clish CB, Prinz M, Prat A, Antel J, Quintana FJ (2016) Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med 22(6):586–597. doi:10.1038/nm.4106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salem M, Mony JT, Lobner M, Khorooshi R, Owens T (2011) Interferon regulatory factor-7 modulates experimental autoimmune encephalomyelitis in mice. J Neuroinflammation 8:181. doi:10.1186/1742-2094-8-181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salminen A, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T (2009) Inflammation in Alzheimer’s disease: amyloid-beta oligomers trigger innate immunity defence via pattern recognition receptors. Prog Neurobiol 87(3):181–194

    Article  CAS  PubMed  Google Scholar 

  • Sastre M, Dewachter I, Landreth GE, Willson TM, Klockgether T, van Leuven F, Heneka MT (2003) Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of beta-secretase. J Neurosci 23(30):9796–9804

    Article  CAS  PubMed  Google Scholar 

  • Sastre M, Dewachter I, Rossner S, Bogdanovic N, Rosen E, Borghgraef P, Evert BO, Dumitrescu-Ozimek L, Thal DR, Landreth G, Walter J, Klockgether T, van Leuven F, Heneka MT (2006) Nonsteroidal anti-inflammatory drugs repress beta-secretase gene promoter activity by the activation of PPARgamma. Proc Natl Acad Sci USA 103(2):443–448. doi:10.1073/pnas.0503839103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber G, Piehler J (2015) The molecular basis for functional plasticity in type I interferon signaling. Trends Immunol 36(3):139–149. doi:10.1016/j.it.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766

    Article  CAS  PubMed  Google Scholar 

  • Su F, Bai F, Zhang Z (2016) Inflammatory cytokines and Alzheimer’s disease: a review from the perspective of genetic polymorphisms. Neurosci Bull 32(5):469–480. doi:10.1007/s12264-016-0055-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudduth TL, Schmitt FA, Nelson PT, Wilcock DM (2013) Neuroinflammatory phenotype in early Alzheimer’s disease. Neurobiol Aging 34(4):1051–1059. doi:10.1016/j.neurobiolaging.2012.09.012

    Article  CAS  PubMed  Google Scholar 

  • Taylor JM, Minter MR, Newman AG, Zhang M, Adlard PA, Crack PJ (2014) Type-1 interferon signaling mediates neuro-inflammatory events in models of Alzheimer’s disease. Neurobiol Aging 35(5):1012–1023. doi:10.1016/j.neurobiolaging.2013.10.089

    Article  CAS  PubMed  Google Scholar 

  • Thornton P, Pinteaux E, Gibson RM, Allan SM, Rothwell NJ (2006) Interleukin-1-induced neurotoxicity is mediated by glia and requires caspase activation and free radical release. J Neurochem 98(1):258–266. doi:10.1111/j.1471-4159.2006.03872.x

    Article  CAS  PubMed  Google Scholar 

  • Town T, Laouar Y, Pittenger C, Mori T, Szekely CA, Tan J, Duman RS, Flavell RA (2008) Blocking TGF-beta-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat Med 14(6):681–687. doi:10.1038/nm1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlad SC, Miller DR, Kowall NW, Felson DT (2008) Protective effects of NSAIDs on the development of Alzheimer disease. Neurology 70(19):1672–1677. doi:10.1212/01.wnl.0000311269.57716.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Campbell IL (2005) Innate STAT1-dependent genomic response of neurons to the antiviral cytokine alpha interferon. J Virol 79(13):8295–8302. doi:10.1128/JVI.79.13.8295-8302.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weitz TM, Gate D, Rezai-Zadeh K, Town T (2014) MyD88 is dispensable for cerebral amyloidosis and neuroinflammation in APP/PS1 transgenic mice. Am J Pathol 184(11):2855–2861. doi:10.1016/j.ajpath.2014.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wes PD, Holtman IR, Boddeke EW, Moller T, Eggen BJ (2016) Next generation transcriptomics and genomics elucidate biological complexity of microglia in health and disease. Glia 64(2):197–213. doi:10.1002/glia.22866

    Article  PubMed  Google Scholar 

  • Wingerchuk DM, Carter JL (2014) Multiple sclerosis: current and emerging disease-modifying therapies and treatment strategies. Mayo Clin Proc 89(2):225–240. doi:10.1016/j.mayocp.2013.11.002

    Article  PubMed  Google Scholar 

  • Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L, Masliah E, Mucke L (2001) TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med 7(5):612–618. doi:10.1038/87945

    Article  CAS  PubMed  Google Scholar 

  • Zandi PP, Anthony JC, Hayden KM, Mehta K, Mayer L, Breitner JC, Cache County Study Initiative (2002) Reduced incidence of AD with NSAID but not H2 receptor antagonists: the Cache County Study. Neurology 59(6):880–886

    Article  CAS  PubMed  Google Scholar 

  • Zheng LS, Hitoshi S, Kaneko N, Takao K, Miyakawa T, Tanaka Y, Xia H, Kalinke U, Kudo K, Kanba S, Ikenaka K, Sawamoto K (2014) Mechanisms for interferon-alpha-induced depression and neural stem cell dysfunction. Stem Cell Rep 3(1):73–84. doi:10.1016/j.stemcr.2014.05.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Health and Medical Research Council (NHMRC) of Australia.

Author information

Authors and Affiliations

Authors

Contributions

JMT, ZM, MRM, and PJC all contributed to the writing of this manuscript.

Corresponding author

Correspondence to Peter J. Crack.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, J.M., Moore, Z., Minter, M.R. et al. Type-I interferon pathway in neuroinflammation and neurodegeneration: focus on Alzheimer’s disease. J Neural Transm 125, 797–807 (2018). https://doi.org/10.1007/s00702-017-1745-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-017-1745-4

Keywords

Navigation