Skip to main content
Log in

Complete genome sequence of turnip ringspot virus

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Here we present the complete genome sequences of two TuRSV isolates. They are 90–100% identical in distinct genes, but reasonably less identical with RaMV isolates. Regarding the CPs, TuRSV and RaMV have an aa sequence identity of 72–74% among all isolates and the proposed cut-off level is 75%. For the proteinase–polymerase region, the average value between the two isolates of TuRSV and three isolates of RaMV is 79.8% and the cut-off level is 80%. At the moment, TuRSV and RaMV are the two identified species most closely related within the genus Comovirus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Campanella JJ, Bitincka L, Smalley J (2003) MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 4:29

    Article  PubMed  Google Scholar 

  2. Holness CL, Lomonossoff GP, Evans D, Maule AJ (1989) Identification of the initiation codons for translation of cowpea mosaic virus middle component RNA using site-directed mutagenesis of an infectious cDNA clone. Virology 172:311–320

    Article  CAS  PubMed  Google Scholar 

  3. Ikegami M, Iwanami T, Jones AT, Karasev AV, Le Gall O, Lehto K, Sanfaçon H, Wellink J, Wetzel T (2002)Taxonomy of recognized and putative species in the family Comoviridae. XIIth IUMS Virology meeting. Paris, France, 27th July–2th August

  4. Klootwijk J, Klein I, Zabel P, van Kammen A (1977) Cowpea mosaic virus RNAs have neither m7GpppN nor mono-, di- or triphosphates at their 5′ends. Cell 11:73–82

    Article  CAS  PubMed  Google Scholar 

  5. Koenig R, Fisher HU (1981) A Moroccan radish mosaic virus isolate from turnip. Plant Dis 68:758–760

    Google Scholar 

  6. Koloniuk I, Špak J, Petrzik K (2008) Turnip ringspot virus recognised on Chinese cabbage in Russia. Eur J Plant Pathol 122:447–450

    Article  CAS  Google Scholar 

  7. Komatsu K, Hatada K, Hashimoto M, Ozeki J, Maejima K, Kagiwada S, Yamaji Y, Namba S (2008) Complete nucleotide sequence of a California isolate of radish mosaic virus. Arch Virol 153:2167–2168

    Article  CAS  PubMed  Google Scholar 

  8. Komatsu K, Hashimoto M, Maejima K, Ozeki J, Kagiwada S, Takahashi S, Yamaji Y, Namba S (2007) Genome sequence of a Japanese isolate of radish mosaic virus: the first complete nucleotide sequence of a crucifer-infecting comovirus. Arch Virol 152:1501–1506

    Article  CAS  PubMed  Google Scholar 

  9. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al (2007) ClustalW and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  10. Mamula Ð, Miličić D, Štefanac Z, Horváth J (1972) Neue Angaben über Verbreitung und Wirtspflanzen des Rettichmosaik-Virus (radish mosaic virus). Acta Phytopathol Acad Sci Hung 7:369–375

    Google Scholar 

  11. Plakolli M, Štefanac Z (1976) Serological and other relationships among isolates of radish mosaic virus. J Phytopathol 87:114–119

    Article  Google Scholar 

  12. Rajakaruna P, Khandekar S, Meulia T, Leisner SM (2007) Identification and host relations of turnip ringspot virus, a novel comovirus from Ohio. Plant Dis 91:1212–1220

    Article  CAS  Google Scholar 

  13. Sanfaçon H, Wellink J, Le Gall O, Karasev A, van der Vlugt R, Wetzel T (2009) Secoviridae: a proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus, and the proposed genus Torradovirus. Arch Virol 154:899–907

    Article  PubMed  Google Scholar 

  14. Špak J, Kubelková D (2000) Serological variability among European isolates of radish mosaic virus. Plant Pathol 49:295–301

    Article  Google Scholar 

  15. Taylor KM, Spall VE, Butler PJG, Lomonossoff GP (1999) The cleavage carboxyl-terminus of the small coat protein of cowpea mosaic virus is involved in RNA encapsidation. Virology 255:129–137

    Article  CAS  PubMed  Google Scholar 

  16. Tompkins CM (1939) Two mosaic diseases of annual stocks. J Agric Res 58:119–130

    Google Scholar 

  17. Wellink J, Rezelman G, Goldbach R, Beyreuther K (1986) Determination of the proteolytic processing sites in the polyprotein encoded by the bottom-component RNA of Cowpea mosaic virus. J Virol 59:50–58

    CAS  PubMed  Google Scholar 

  18. Wetzel T, Ebel R, Moury B, Le Gall O, Endisch S, Reustle GM, Krczal G (2006) Sequence analysis of grapevine isolates of raspberry ringspot nepovirus. Arch Virol 151:599–606

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by grant 522/07/0053 of the Czech Science Foundation, and grant AV0Z50510513 of the Academy of Sciences of the Czech Republic. Both authors contributed equally.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Petrzik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koloniuk, I., Petrzik, K. Complete genome sequence of turnip ringspot virus. Arch Virol 154, 1851–1853 (2009). https://doi.org/10.1007/s00705-009-0511-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-009-0511-9

Keywords

Navigation