Skip to main content
Erschienen in: Archives of Virology 5/2014

01.05.2014 | Virology Division News

Virus nomenclature below the species level: a standardized nomenclature for filovirus strains and variants rescued from cDNA

verfasst von: Jens H. Kuhn, Yīmíng Bào, Sina Bavari, Stephan Becker, Steven Bradfute, Kristina Brauburger, J. Rodney Brister, Alexander A. Bukreyev, Yíngyún Caì, Kartik Chandran, Robert A. Davey, Olga Dolnik, John M. Dye, Sven Enterlein, Jean-Paul Gonzalez, Pierre Formenty, Alexander N. Freiberg, Lisa E. Hensley, Thomas Hoenen, Anna N. Honko, Georgy M. Ignatyev, Peter B. Jahrling, Karl M. Johnson, Hans-Dieter Klenk, Gary Kobinger, Matthew G. Lackemeyer, Eric M. Leroy, Mark S. Lever, Elke Mühlberger, Sergey V. Netesov, Gene G. Olinger, Gustavo Palacios, Jean L. Patterson, Janusz T. Paweska, Louise Pitt, Sheli R. Radoshitzky, Elena I. Ryabchikova, Erica Ollmann Saphire, Aleksandr M. Shestopalov, Sophie J. Smither, Nancy J. Sullivan, Robert Swanepoel, Ayato Takada, Jonathan S. Towner, Guido van der Groen, Viktor E. Volchkov, Valentina A. Volchkova, Victoria Wahl-Jensen, Travis K. Warren, Kelly L. Warfield, Manfred Weidmann, Stuart T. Nichol

Erschienen in: Archives of Virology | Ausgabe 5/2014

Einloggen, um Zugang zu erhalten

Abstract

Specific alterations (mutations, deletions, insertions) of virus genomes are crucial for the functional characterization of their regulatory elements and their expression products, as well as a prerequisite for the creation of attenuated viruses that could serve as vaccine candidates. Virus genome tailoring can be performed either by using traditionally cloned genomes as starting materials, followed by site-directed mutagenesis, or by de novo synthesis of modified virus genomes or parts thereof. A systematic nomenclature for such recombinant viruses is necessary to set them apart from wild-type and laboratory-adapted viruses, and to improve communication and collaborations among researchers who may want to use recombinant viruses or create novel viruses based on them. A large group of filovirus experts has recently proposed nomenclatures for natural and laboratory animal-adapted filoviruses that aim to simplify the retrieval of sequence data from electronic databases. Here, this work is extended to include nomenclature for filoviruses obtained in the laboratory via reverse genetics systems. The previously developed template for natural filovirus genetic variant naming, <virus name> (<strain>/)<isolation host-suffix>/<country of sampling>/<year of sampling>/<genetic variant designation>-<isolate designation>, is retained, but we propose to adapt the type of information added to each field for cDNA clone-derived filoviruses. For instance, the full-length designation of an Ebola virus Kikwit variant rescued from a plasmid developed at the US Centers for Disease Control and Prevention could be akin to “Ebola virus H.sapiens-rec/COD/1995/Kikwit-abc1” (with the suffix “rec” identifying the recombinant nature of the virus and “abc1” being a placeholder for any meaningful isolate designator). Such a full-length designation should be used in databases and the methods section of publications. Shortened designations (such as “EBOV H.sap/COD/95/Kik-abc1”) and abbreviations (such as “EBOV/Kik-abc1”) could be used in the remainder of the text, depending on how critical it is to convey information contained in the full-length name. “EBOV” would suffice if only one EBOV strain/variant/isolate is addressed.
Literatur
1.
Zurück zum Zitat Adams MJ, Carstens EB (2012) Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2012). Arch Virol 157:1411–1422PubMedCrossRef Adams MJ, Carstens EB (2012) Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2012). Arch Virol 157:1411–1422PubMedCrossRef
2.
Zurück zum Zitat Calisher CH, van Regenmortel MHV (2009) Should all other biologists follow the lead of virologists and stop italicizing the names of living organisms? Zootaxa 2113:63–68 Calisher CH, van Regenmortel MHV (2009) Should all other biologists follow the lead of virologists and stop italicizing the names of living organisms? Zootaxa 2113:63–68
3.
Zurück zum Zitat Ebihara H, Takada A, Kobasa D, Jones S, Neumann G, Theriault S, Bray M, Feldmann H, Kawaoka Y (2006) Molecular determinants of Ebola virus virulence in mice. PLoS Pathog 2:e73PubMedCentralPubMedCrossRef Ebihara H, Takada A, Kobasa D, Jones S, Neumann G, Theriault S, Bray M, Feldmann H, Kawaoka Y (2006) Molecular determinants of Ebola virus virulence in mice. PLoS Pathog 2:e73PubMedCentralPubMedCrossRef
4.
Zurück zum Zitat Ebihara H, Theriault S, Neumann G, Alimonti JB, Geisbert JB, Hensley LE, Groseth A, Jones SM, Geisbert TW, Kawaoka Y, Feldmann H (2007) In vitro and in vivo characterization of recombinant Ebola viruses expressing enhanced green fluorescent protein. J Infect Dis 196(suppl. 2):S313–S322PubMedCrossRef Ebihara H, Theriault S, Neumann G, Alimonti JB, Geisbert JB, Hensley LE, Groseth A, Jones SM, Geisbert TW, Kawaoka Y, Feldmann H (2007) In vitro and in vivo characterization of recombinant Ebola viruses expressing enhanced green fluorescent protein. J Infect Dis 196(suppl. 2):S313–S322PubMedCrossRef
5.
Zurück zum Zitat Enterlein S, Volchkov V, Weik M, Kolesnikova L, Volchkova V, Klenk HD, Mühlberger E (2006) Rescue of recombinant Marburg virus from cDNA is dependent on nucleocapsid protein VP30. J Virol 80:1038–1043PubMedCentralPubMedCrossRef Enterlein S, Volchkov V, Weik M, Kolesnikova L, Volchkova V, Klenk HD, Mühlberger E (2006) Rescue of recombinant Marburg virus from cDNA is dependent on nucleocapsid protein VP30. J Virol 80:1038–1043PubMedCentralPubMedCrossRef
6.
Zurück zum Zitat Enterlein S, Schmidt KM, Schümann M, Conrad D, Krähling V, Olejnik J, Mühlberger E (2009) The Marburg virus 3’ noncoding region structurally and functionally differs from that of Ebola virus. J Virol 83:4508–4519PubMedCentralPubMedCrossRef Enterlein S, Schmidt KM, Schümann M, Conrad D, Krähling V, Olejnik J, Mühlberger E (2009) The Marburg virus 3’ noncoding region structurally and functionally differs from that of Ebola virus. J Virol 83:4508–4519PubMedCentralPubMedCrossRef
7.
Zurück zum Zitat Feldmann H, Geisbert TW, Jahrling PB, Klenk H-D, Netesov SV, Peters CJ, Sanchez A, Swanepoel R, Volchkov VE (2005) Family Filoviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus Taxonomy—Eighth Report of the International Committee on Taxonomy of Viruses. Elsevier/Academic Press, San Diego, pp 645–653 Feldmann H, Geisbert TW, Jahrling PB, Klenk H-D, Netesov SV, Peters CJ, Sanchez A, Swanepoel R, Volchkov VE (2005) Family Filoviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus Taxonomy—Eighth Report of the International Committee on Taxonomy of Viruses. Elsevier/Academic Press, San Diego, pp 645–653
8.
Zurück zum Zitat Groseth A, Marzi A, Hoenen T, Herwig A, Gardner D, Becker S, Ebihara H, Feldmann H (2012) The Ebola virus glycoprotein contributes to but is not sufficient for virulence in vivo. PLoS Pathog 8:e1002847PubMedCentralPubMedCrossRef Groseth A, Marzi A, Hoenen T, Herwig A, Gardner D, Becker S, Ebihara H, Feldmann H (2012) The Ebola virus glycoprotein contributes to but is not sufficient for virulence in vivo. PLoS Pathog 8:e1002847PubMedCentralPubMedCrossRef
9.
Zurück zum Zitat Hartman AL, Dover JE, Towner JS, Nichol ST (2006) Reverse genetic generation of recombinant Zaire Ebola viruses containing disrupted IRF-3 inhibitory domains results in attenuated virus growth in vitro and higher levels of IRF-3 activation without inhibiting viral transcription or replication. J Virol 80:6430–6440PubMedCentralPubMedCrossRef Hartman AL, Dover JE, Towner JS, Nichol ST (2006) Reverse genetic generation of recombinant Zaire Ebola viruses containing disrupted IRF-3 inhibitory domains results in attenuated virus growth in vitro and higher levels of IRF-3 activation without inhibiting viral transcription or replication. J Virol 80:6430–6440PubMedCentralPubMedCrossRef
10.
Zurück zum Zitat Hartman AL, Bird BH, Towner JS, Antoniadou ZA, Zaki SR, Nichol ST (2008) Inhibition of IRF-3 activation by VP35 is critical for the high level of virulence of Ebola virus. J Virol 82:2699–2704PubMedCentralPubMedCrossRef Hartman AL, Bird BH, Towner JS, Antoniadou ZA, Zaki SR, Nichol ST (2008) Inhibition of IRF-3 activation by VP35 is critical for the high level of virulence of Ebola virus. J Virol 82:2699–2704PubMedCentralPubMedCrossRef
11.
Zurück zum Zitat Hoenen T, Groseth A, de Kok-Mercado F, Kuhn JH, Wahl-Jensen V (2011) Minigenomes, transcription and replication competent virus-like particles and beyond: reverse genetics systems for filoviruses and other negative stranded hemorrhagic fever viruses. Antiviral Res 91:195–208PubMedCentralPubMedCrossRef Hoenen T, Groseth A, de Kok-Mercado F, Kuhn JH, Wahl-Jensen V (2011) Minigenomes, transcription and replication competent virus-like particles and beyond: reverse genetics systems for filoviruses and other negative stranded hemorrhagic fever viruses. Antiviral Res 91:195–208PubMedCentralPubMedCrossRef
12.
Zurück zum Zitat Hoenen T, Shabman RS, Groseth A, Herwig A, Weber M, Schudt G, Dolnik O, Basler CF, Becker S, Feldmann H (2012) Inclusion bodies are a site of ebolavirus replication. J Virol 86:11779–11788PubMedCentralPubMedCrossRef Hoenen T, Shabman RS, Groseth A, Herwig A, Weber M, Schudt G, Dolnik O, Basler CF, Becker S, Feldmann H (2012) Inclusion bodies are a site of ebolavirus replication. J Virol 86:11779–11788PubMedCentralPubMedCrossRef
13.
Zurück zum Zitat Hoenen T, Groseth A, Callison J, Takada A, Feldmann H (2013) A novel Ebola virus expressing luciferase allows for rapid and quantitative testing of antivirals. Antiviral Res 99:207–213PubMedCrossRef Hoenen T, Groseth A, Callison J, Takada A, Feldmann H (2013) A novel Ebola virus expressing luciferase allows for rapid and quantitative testing of antivirals. Antiviral Res 99:207–213PubMedCrossRef
15.
Zurück zum Zitat Krähling V, Dolnik O, Kolesnikova L, Schmidt-Chanasit J, Jordan I, Sandig V, Günther S, Becker S (2010) Establishment of fruit bat cells (Rousettus aegyptiacus) as a model system for the investigation of filoviral infection. PLoS Negl Trop Dis 4:e802PubMedCentralPubMedCrossRef Krähling V, Dolnik O, Kolesnikova L, Schmidt-Chanasit J, Jordan I, Sandig V, Günther S, Becker S (2010) Establishment of fruit bat cells (Rousettus aegyptiacus) as a model system for the investigation of filoviral infection. PLoS Negl Trop Dis 4:e802PubMedCentralPubMedCrossRef
16.
Zurück zum Zitat Kuhn JH, Becker S, Ebihara H, Geisbert TW, Johnson KM, Lipkin WI, Negredo A, Netesov SV, Nichol ST, Palacios G, Peters CJ, Tenorio A, Volchkov VE, Jahrling PB (2010) Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations. Arch Virol 155:2083–2103PubMedCentralPubMedCrossRef Kuhn JH, Becker S, Ebihara H, Geisbert TW, Johnson KM, Lipkin WI, Negredo A, Netesov SV, Nichol ST, Palacios G, Peters CJ, Tenorio A, Volchkov VE, Jahrling PB (2010) Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations. Arch Virol 155:2083–2103PubMedCentralPubMedCrossRef
17.
Zurück zum Zitat Kuhn JH, Becker S, Ebihara H, Geisbert TW, Jahrling PB, Kawaoka Y, Netesov SV, Nichol ST, Peters CJ, Volchkov VE, Ksiazek TG (2011) Family Filoviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus Taxonomy—Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier/Academic Press, London, pp 665–671 Kuhn JH, Becker S, Ebihara H, Geisbert TW, Jahrling PB, Kawaoka Y, Netesov SV, Nichol ST, Peters CJ, Volchkov VE, Ksiazek TG (2011) Family Filoviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus Taxonomy—Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier/Academic Press, London, pp 665–671
18.
Zurück zum Zitat Kuhn JH, Bao Y, Bavari S, Becker S, Bradfute S, Brister JR, Bukreyev AA, Caì Y, Chandran K, Davey RA, Dolnik O, Dye JM, Enterlein S, Gonzalez JP, Formenty P, Freiberg AN, Hensley LE, Honko AN, Ignatyev GM, Jahrling PB, Johnson KM, Klenk HD, Kobinger G, Lackemeyer MG, Leroy EM, Lever MS, Lofts LL, Mühlberger E, Netesov SV, Olinger GG, Palacios G, Patterson JL, Paweska JT, Pitt L, Radoshitzky SR, Ryabchikova EI, Saphire EO, Shestopalov AM, Smither SJ, Sullivan NJ, Swanepoel R, Takada A, Towner JS, van der Groen G, Volchkov VE, Wahl-Jensen V, Warren TK, Warfield KL, Weidmann M, Nichol ST (2013) Virus nomenclature below the species level: a standardized nomenclature for laboratory animal-adapted strains and variants of viruses assigned to the family Filoviridae. Arch Virol 158:1425–1432PubMedCrossRef Kuhn JH, Bao Y, Bavari S, Becker S, Bradfute S, Brister JR, Bukreyev AA, Caì Y, Chandran K, Davey RA, Dolnik O, Dye JM, Enterlein S, Gonzalez JP, Formenty P, Freiberg AN, Hensley LE, Honko AN, Ignatyev GM, Jahrling PB, Johnson KM, Klenk HD, Kobinger G, Lackemeyer MG, Leroy EM, Lever MS, Lofts LL, Mühlberger E, Netesov SV, Olinger GG, Palacios G, Patterson JL, Paweska JT, Pitt L, Radoshitzky SR, Ryabchikova EI, Saphire EO, Shestopalov AM, Smither SJ, Sullivan NJ, Swanepoel R, Takada A, Towner JS, van der Groen G, Volchkov VE, Wahl-Jensen V, Warren TK, Warfield KL, Weidmann M, Nichol ST (2013) Virus nomenclature below the species level: a standardized nomenclature for laboratory animal-adapted strains and variants of viruses assigned to the family Filoviridae. Arch Virol 158:1425–1432PubMedCrossRef
19.
Zurück zum Zitat Kuhn JH, Bao Y, Bavari S, Becker S, Bradfute S, Brister JR, Bukreyev AA, Chandran K, Davey RA, Dolnik O, Dye JM, Enterlein S, Hensley LE, Honko AN, Jahrling PB, Johnson KM, Kobinger G, Leroy EM, Lever MS, Mühlberger E, Netesov SV, Olinger GG, Palacios G, Patterson JL, Paweska JT, Pitt L, Radoshitzky SR, Saphire EO, Smither SJ, Swanepoel R, Towner JS, van der Groen G, Volchkov VE, Wahl-Jensen V, Warren TK, Weidmann M, Nichol ST (2013) Virus nomenclature below the species level: a standardized nomenclature for natural variants of viruses assigned to the family Filoviridae. Arch Virol 158:301–311PubMedCentralPubMedCrossRef Kuhn JH, Bao Y, Bavari S, Becker S, Bradfute S, Brister JR, Bukreyev AA, Chandran K, Davey RA, Dolnik O, Dye JM, Enterlein S, Hensley LE, Honko AN, Jahrling PB, Johnson KM, Kobinger G, Leroy EM, Lever MS, Mühlberger E, Netesov SV, Olinger GG, Palacios G, Patterson JL, Paweska JT, Pitt L, Radoshitzky SR, Saphire EO, Smither SJ, Swanepoel R, Towner JS, van der Groen G, Volchkov VE, Wahl-Jensen V, Warren TK, Weidmann M, Nichol ST (2013) Virus nomenclature below the species level: a standardized nomenclature for natural variants of viruses assigned to the family Filoviridae. Arch Virol 158:301–311PubMedCentralPubMedCrossRef
20.
Zurück zum Zitat Lubaki NM, Ilinykh P, Pietzsch C, Tigabu B, Freiberg AN, Koup RA, Bukreyev A (2013) The lack of maturation of Ebola virus-infected dendritic cells results from the cooperative effect of at least two viral domains. J Virol 87:7471–7485PubMedCentralPubMedCrossRef Lubaki NM, Ilinykh P, Pietzsch C, Tigabu B, Freiberg AN, Koup RA, Bukreyev A (2013) The lack of maturation of Ebola virus-infected dendritic cells results from the cooperative effect of at least two viral domains. J Virol 87:7471–7485PubMedCentralPubMedCrossRef
21.
Zurück zum Zitat Martínez MJ, Biedenkopf N, Volchkova V, Hartlieb B, Alazard-Dany N, Reynard O, Becker S, Volchkov V (2008) Role of Ebola virus VP30 in transcription reinitiation. J Virol 82:12569–12573PubMedCentralPubMedCrossRef Martínez MJ, Biedenkopf N, Volchkova V, Hartlieb B, Alazard-Dany N, Reynard O, Becker S, Volchkov V (2008) Role of Ebola virus VP30 in transcription reinitiation. J Virol 82:12569–12573PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Martinez MJ, Volchkova VA, Raoul H, Alazard-Dany N, Reynard O, Volchkov VE (2011) Role of VP30 phosphorylation in the Ebola virus replication cycle. J Infect Dis 204(Suppl 3):S934–S940PubMedCrossRef Martinez MJ, Volchkova VA, Raoul H, Alazard-Dany N, Reynard O, Volchkov VE (2011) Role of VP30 phosphorylation in the Ebola virus replication cycle. J Infect Dis 204(Suppl 3):S934–S940PubMedCrossRef
23.
Zurück zum Zitat Mateo M, Carbonnelle C, Martinez MJ, Reynard O, Page A, Volchkova VA, Volchkov VE (2011) Knockdown of Ebola Virus VP24 impairs viral nucleocapsid assembly and prevents virus replication. J Infect Dis 204(Suppl 3):S892–S896PubMedCrossRef Mateo M, Carbonnelle C, Martinez MJ, Reynard O, Page A, Volchkova VA, Volchkov VE (2011) Knockdown of Ebola Virus VP24 impairs viral nucleocapsid assembly and prevents virus replication. J Infect Dis 204(Suppl 3):S892–S896PubMedCrossRef
24.
Zurück zum Zitat Mateo M, Carbonnelle C, Reynard O, Kolesnikova L, Nemirov K, Page A, Volchkova VA, Volchkov VE (2011) VP24 is a molecular determinant of Ebola virus virulence in guinea pigs. J Infect Dis 204(Suppl 3):S1011–S1020PubMedCrossRef Mateo M, Carbonnelle C, Reynard O, Kolesnikova L, Nemirov K, Page A, Volchkova VA, Volchkov VE (2011) VP24 is a molecular determinant of Ebola virus virulence in guinea pigs. J Infect Dis 204(Suppl 3):S1011–S1020PubMedCrossRef
25.
Zurück zum Zitat Mittler E, Kolesnikova L, Herwig A, Dolnik O, Becker S (2013) Assembly of the Marburg virus envelope. Cell Microbiol 15:270–284PubMedCrossRef Mittler E, Kolesnikova L, Herwig A, Dolnik O, Becker S (2013) Assembly of the Marburg virus envelope. Cell Microbiol 15:270–284PubMedCrossRef
26.
Zurück zum Zitat Mpanju OM, Towner JS, Dover JE, Nichol ST, Wilson CA (2006) Identification of two amino acid residues on Ebola virus glycoprotein 1 critical for cell entry. Virus Res 121:205–214PubMedCrossRef Mpanju OM, Towner JS, Dover JE, Nichol ST, Wilson CA (2006) Identification of two amino acid residues on Ebola virus glycoprotein 1 critical for cell entry. Virus Res 121:205–214PubMedCrossRef
27.
Zurück zum Zitat Neumann G, Feldmann H, Watanabe S, Lukashevich I, Kawaoka Y (2002) Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture. J Virol 76:406–410PubMedCentralPubMedCrossRef Neumann G, Feldmann H, Watanabe S, Lukashevich I, Kawaoka Y (2002) Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture. J Virol 76:406–410PubMedCentralPubMedCrossRef
28.
Zurück zum Zitat Neumann G, Ebihara H, Takada A, Noda T, Kobasa D, Jasenosky LD, Watanabe S, Kim JH, Feldmann H, Kawaoka Y (2005) Ebola virus VP40 late domains are not essential for viral replication in cell culture. J Virol 79:10300–10307PubMedCentralPubMedCrossRef Neumann G, Ebihara H, Takada A, Noda T, Kobasa D, Jasenosky LD, Watanabe S, Kim JH, Feldmann H, Kawaoka Y (2005) Ebola virus VP40 late domains are not essential for viral replication in cell culture. J Virol 79:10300–10307PubMedCentralPubMedCrossRef
29.
Zurück zum Zitat Prins KC, Delpeut S, Leung DW, Reynard O, Volchkova VA, Reid SP, Ramanan P, Cardenas WB, Amarasinghe GK, Volchkov VE, Basler CF (2010) Mutations abrogating VP35 interaction with double-stranded RNA render Ebola virus avirulent in guinea pigs. J Virol 84:3004–3015PubMedCentralPubMedCrossRef Prins KC, Delpeut S, Leung DW, Reynard O, Volchkova VA, Reid SP, Ramanan P, Cardenas WB, Amarasinghe GK, Volchkov VE, Basler CF (2010) Mutations abrogating VP35 interaction with double-stranded RNA render Ebola virus avirulent in guinea pigs. J Virol 84:3004–3015PubMedCentralPubMedCrossRef
30.
Zurück zum Zitat Schmidt KM, Schümann M, Olejnik J, Krähling V, Mühlberger E (2011) Recombinant Marburg Virus expressing EGFP allows rapid screening of virus growth and real-time visualization of virus spread. J Infect Dis 204(Suppl 3):S861–S870PubMedCentralPubMedCrossRef Schmidt KM, Schümann M, Olejnik J, Krähling V, Mühlberger E (2011) Recombinant Marburg Virus expressing EGFP allows rapid screening of virus growth and real-time visualization of virus spread. J Infect Dis 204(Suppl 3):S861–S870PubMedCentralPubMedCrossRef
31.
Zurück zum Zitat Shabman RS, Hoenen T, Groseth A, Jabado O, Binning JM, Amarasinghe GK, Feldmann H, Basler CF (2013) An upstream open reading frame modulates Ebola virus polymerase translation and virus replication. PLoS Pathog 9:e1003147PubMedCentralPubMedCrossRef Shabman RS, Hoenen T, Groseth A, Jabado O, Binning JM, Amarasinghe GK, Feldmann H, Basler CF (2013) An upstream open reading frame modulates Ebola virus polymerase translation and virus replication. PLoS Pathog 9:e1003147PubMedCentralPubMedCrossRef
32.
Zurück zum Zitat Theriault S, Groseth A, Neumann G, Kawaoka Y, Feldmann H (2004) Rescue of Ebola virus from cDNA using heterologous support proteins. Virus Res 106:43–50PubMedCrossRef Theriault S, Groseth A, Neumann G, Kawaoka Y, Feldmann H (2004) Rescue of Ebola virus from cDNA using heterologous support proteins. Virus Res 106:43–50PubMedCrossRef
33.
Zurück zum Zitat Towner JS, Paragas J, Dover JE, Gupta M, Goldsmith CS, Huggins JW, Nichol ST (2005) Generation of eGFP expressing recombinant Zaire ebolavirus for analysis of early pathogenesis events and high-throughput antiviral drug screening. Virology 332:20–27PubMedCrossRef Towner JS, Paragas J, Dover JE, Gupta M, Goldsmith CS, Huggins JW, Nichol ST (2005) Generation of eGFP expressing recombinant Zaire ebolavirus for analysis of early pathogenesis events and high-throughput antiviral drug screening. Virology 332:20–27PubMedCrossRef
34.
Zurück zum Zitat Volchkov VE, Volchkova VA, Mühlberger E, Kolesnikova LV, Weik M, Dolnik O, Klenk HD (2001) Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science 291:1965–1969PubMedCrossRef Volchkov VE, Volchkova VA, Mühlberger E, Kolesnikova LV, Weik M, Dolnik O, Klenk HD (2001) Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science 291:1965–1969PubMedCrossRef
35.
Zurück zum Zitat Volchkova VA, Dolnik O, Martinez MJ, Reynard O, Volchkov VE (2011) Genomic RNA editing and its impact on Ebola virus adaptation during serial passages in cell culture and infection of guinea pigs. J Infect Dis 204(Suppl 3):S941–S946PubMedCrossRef Volchkova VA, Dolnik O, Martinez MJ, Reynard O, Volchkov VE (2011) Genomic RNA editing and its impact on Ebola virus adaptation during serial passages in cell culture and infection of guinea pigs. J Infect Dis 204(Suppl 3):S941–S946PubMedCrossRef
Metadaten
Titel
Virus nomenclature below the species level: a standardized nomenclature for filovirus strains and variants rescued from cDNA
verfasst von
Jens H. Kuhn
Yīmíng Bào
Sina Bavari
Stephan Becker
Steven Bradfute
Kristina Brauburger
J. Rodney Brister
Alexander A. Bukreyev
Yíngyún Caì
Kartik Chandran
Robert A. Davey
Olga Dolnik
John M. Dye
Sven Enterlein
Jean-Paul Gonzalez
Pierre Formenty
Alexander N. Freiberg
Lisa E. Hensley
Thomas Hoenen
Anna N. Honko
Georgy M. Ignatyev
Peter B. Jahrling
Karl M. Johnson
Hans-Dieter Klenk
Gary Kobinger
Matthew G. Lackemeyer
Eric M. Leroy
Mark S. Lever
Elke Mühlberger
Sergey V. Netesov
Gene G. Olinger
Gustavo Palacios
Jean L. Patterson
Janusz T. Paweska
Louise Pitt
Sheli R. Radoshitzky
Elena I. Ryabchikova
Erica Ollmann Saphire
Aleksandr M. Shestopalov
Sophie J. Smither
Nancy J. Sullivan
Robert Swanepoel
Ayato Takada
Jonathan S. Towner
Guido van der Groen
Viktor E. Volchkov
Valentina A. Volchkova
Victoria Wahl-Jensen
Travis K. Warren
Kelly L. Warfield
Manfred Weidmann
Stuart T. Nichol
Publikationsdatum
01.05.2014
Verlag
Springer Vienna
Erschienen in
Archives of Virology / Ausgabe 5/2014
Print ISSN: 0304-8608
Elektronische ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-013-1877-2

Weitere Artikel der Ausgabe 5/2014

Archives of Virology 5/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.