Skip to main content

Advertisement

Log in

Prevalence, dynamics, and biochemical predictors of optic nerve remyelination after methanol-induced acute optic neuropathy: a 2-year prospective study in 54 patients

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

We conducted a prospective study in 54 patients with a median age of 48 years (range 23–73) to determine the prevalence and dynamics of optic nerve remyelination after methanol-induced optic neuropathy. Methanol was measured by a gas chromatographic method with flame ionization detection. Formate was measured enzymatically. Measurement of full-field visual evoked potential with monocular checkerboard pattern-reversal stimulation was performed 3–8 and 24–28 months after discharge. The latency of the positive peak (P1) was used for the analysis of remyelination dynamics. Twenty-seven patients had abnormal P1 latencies. Mean P1 latency for right eyes (REs) was 115.3 ± 2.1 ms and for left eyes (LEs) was 117.4 ± 3.2 ms. The group with abnormal latency had lower arterial pH (p = 0.017), higher anion gap (p = 0.013), methanol (p = 0.027), base deficit (p = 0.033), and lactate (p = 0.048). At the second examination, shortening of P1 latencies was registered (REs/LEs 98.3 ± 2.4/102.7 ± 4.5 ms; p < 0.001). The dynamics of latency shortening for REs/LEs were 17 ± 1.3/15.1 ± 3.1 ms, with insignificant inter-eye difference (p = 0.271). The dynamics of remyelination correlated with serum methanol (r = −0.588; p < 0.001), arterial pH (r = 0.339; p = 0.040), and concentration of carbohydrate-deficient transferrin (r = −0.411; p = 0.011). Remyelination occurred in cases of mild or moderate damage of myelin sheaths; no improvement of conduction was found in severe cases. The dynamics of remyelination correlated with the degree of acidosis and severity of poisoning. Chronic alcohol abuse had a negative effect on remyelination dynamics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hovda KE, Hunderi OH, Tafjord AB, Dunlop O, Rudberg N, Jacobsen D (2005) J Intern Med 258:181

    Article  CAS  Google Scholar 

  2. Paasma R, Hovda KE, Tikkerberi A, Jacobsen D (2007) Clin Toxicol 45:152

    Article  CAS  Google Scholar 

  3. Kumar SS, Seerala Boopathy K, Bhaskar ME (2003) J Assoc Physicians India 51:425

    CAS  Google Scholar 

  4. Ahmad K (2000) The Lancet 356:1911

    Article  Google Scholar 

  5. Zakharov S, Pelclova D, Urban P, Navratil T, Diblik P, Kuthan P, Hubacek JA, Miovsky M, Klempir J, Vaneckova M, Seidl Z, Pilin A, Fenclova Z, Petrik V, Kotikova K, Nurieva O, Ridzon P, Hovda KE (2014) Clin Toxicol 52:1013

    Article  CAS  Google Scholar 

  6. Zhang G, Grews K, Wiseman H, Bates N, Hovda KE, Archer JR, Dargan PJ (2012) Application to Include Fomepizole on the WHO Model List of Essential Medicines. http://www.who.int/selection_medicines/committees/expert/19/applications/Fomepizole_4_2_AC_Ad.pdf. Accessed 17 July 2015

  7. Roberts DM, Yates C, Megarbane B, Winchester JF, Maclaren R, Gosselin S, Nolin TD, Lavergne V, Hoffman RS, Ghannoum M, Treatments E (2015) Crit Care Med 43:461

    Article  CAS  Google Scholar 

  8. Liesivuori J, Savolainen H (1991) Pharmacol Toxicol 69:157

    Article  CAS  Google Scholar 

  9. Barceloux DG, Bond GR, Krenzelok EP, Cooper H, Vale JA (2002) J Toxicol Clin Toxicol 40:415

    Article  CAS  Google Scholar 

  10. Osterloh JD, Pond SM, Grady S, Becker CE (1986) Ann Intern Med 104:200

    Article  CAS  Google Scholar 

  11. Zakharov S, Kurcova I, Navratil T, Salek T, Komarc M, Pelclova D (2015) Basic Clin Pharmacol Toxicol 116:445

    Article  CAS  Google Scholar 

  12. Vaneckova M, Zakharov S, Klempir J, Ruzicka E, Bezdicek O, Liskova I, Diblik P, Miovsky M, Hubacek JA, Urban P, Ridzon P, Pelclova D, Burgetova A, Masek M, Seidl Z (2014) Cesk Slov Neurol N 77:235

    Google Scholar 

  13. Akhtari K, Hassanzadeh K, Fakhraei B, Fakhraei N, Hassanzadeh H, Akhtari G, Zarei S, Hassanzadeh K (2015) Monatsh Chem 146:601

    Article  CAS  Google Scholar 

  14. Megarbane B, Borron SW, Baud FJ (2005) Intensive Care Med 31:189

    Article  Google Scholar 

  15. Zakharov S, Navratil T, Pelclova D (2014) Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 158:641

    Google Scholar 

  16. Zakharov S, Pelclova D, Navratil T, Belacek J, Komarc M, Eddleston M, Hovda KE (2015) Clin Toxicol 53:797

    Article  Google Scholar 

  17. Sharpe JA, Hostovsky M, Bilbao JM, Rewcastle NB (1982) Neurology 32:1093

    Article  CAS  Google Scholar 

  18. Carelli V, Ross-Cisneros FN, Sadun AA (2004) Prog Retin Eye Res 23:53

    Article  CAS  Google Scholar 

  19. Paasma R, Hovda KE, Jacobsen D (2009) BMC Clin Pharmacol 9:5

    Article  Google Scholar 

  20. Zakharov S, Pelclova D, Diblik P, Urban P, Kuthan P, Nurieva O, Kotikova K, Navrátil T, Komarc M, Seidl Z, Vaneckova M, Hubacek JA, Bezdicek O, Klempir J, Ridzon P, Ruzicka E, Miovsky M, Janikova B, Hovda KE (2015) Clin Toxicol. doi:10.3109/15563650.2015.1086488

    Google Scholar 

  21. Paasma R, Hovda KE, Hassanian-Moghaddam H, Brahmi N, Afshari R, Sandvik L, Jacobsen D (2012) Clin Toxicol 50:823

    Article  CAS  Google Scholar 

  22. Zakharov S, Navratil T, Pelclova D (2015) Monatsh Chem 146:787

    Article  CAS  Google Scholar 

  23. Zakharov S, Navratil T, Salek T, Kurcova I, Pelclova D (2015) Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. doi:10.5507/bp.2015.008

    Google Scholar 

  24. Jones SJ, Brusa A (2003) J Neurol Sci 206:193

    Article  Google Scholar 

  25. Brusa A, Jones SJ, Kapoor R, Miller DH, Plant GT (1999) J Neurol 246:776

    Article  CAS  Google Scholar 

  26. Brusa A, Jones SJ, Plant GT (2001) Brain 124:468

    Article  CAS  Google Scholar 

  27. Scrimgeour EM, Dethlefs RF, Kevau I (1982) Med J Aust 2:481

    CAS  Google Scholar 

  28. Sharpe JA, Hostovsky M, Bilbao JM, Rewcastle NB (1982) Neurology 32:1093

    Article  CAS  Google Scholar 

  29. Hantson P, de Tourtchaninoff M, Simoens G, Mahieu P, Boschi A, Beguin C, Guerit JM (1999) Crit Care Med 27:2707

    Article  CAS  Google Scholar 

  30. Martin M, Hiltner TD, Wood JC, Fraser SE, Jacobs RE, Readhead C (2006) J Neurosci Res 84:1716

    Article  CAS  Google Scholar 

  31. Klistorner A, Chaganti J, Garrick R, Moffat K, Yiannikas C (2011) Neuroimage 56:21

    Article  CAS  Google Scholar 

  32. Smith I, Kumar P, Molloy S, Rhodes A, Newman PJ, Grounds RM, Bennett ED (2001) Intensive Care Med 27:74

    Article  CAS  Google Scholar 

  33. Sanaei-Zadeh H, Esfeh SK, Zamani N, Jamshidi F, Shadnia S (2011) J Med Toxicol 7:189

    Article  CAS  Google Scholar 

  34. Misra UK, Kalita J, Das A (2003) Electromyogr Clin Neurophysiol 43:57

    CAS  Google Scholar 

  35. Fei GQ, Zhong C, Jin L, Wang J, Zhang Y, Zheng X, Zhang Y, Hong Z (2008) Am J Neuroradiol 29:164

    Article  Google Scholar 

  36. Yeh WY, Lian LM, Chang A, Cheng CK (2013) J Formos Med Assoc 112:165

    Article  Google Scholar 

  37. Fernandez M, Giuliani A, Pirondi S, D’Intino G, Giardino L, Aloe L, Levi-Montalcini R, Calza L (2004) Proc Natl Acad Sci USA 101:16363

    Article  CAS  Google Scholar 

  38. Veselinovic D, Jovanovic M (2005) Acta Fac Med NAISS 22:145

    Google Scholar 

  39. Grzybowski A, Zulsdorff M, Wilhelm H, Tonagel F (2015) Acta Ophthalmol (Copenh) 93:402

    Article  Google Scholar 

  40. Love S (2006) J Clin Pathol 59:1151

    Article  CAS  Google Scholar 

  41. Stibler H (1991) Clin Chem 37:2029

    CAS  Google Scholar 

  42. Zakharov S, Pelclova D, Navratil T, Belacek J, Kurcova I, Komzak O, Salek T, Latta J, Turek R, Bocek R, Kucera C, Hubacek JA, Fenclova Z, Petrik V, Cermak M, Hovda KE (2014) Kidney Int 86:199

    Article  CAS  Google Scholar 

  43. Zakharov S, Nurieva O, Navratil T, Diblik P, Kuthan P, Pelclova D (2014) J Appl Biomed 12:309

    Article  Google Scholar 

  44. Mehraban K, Gmeiner G, Urban E, Gärtner P, Eppacher S, Noe CR (2014) Monatsh Chem 145:1631

    Article  CAS  Google Scholar 

  45. Laila A (2013) Monatsh Chem 144:307

    Article  CAS  Google Scholar 

  46. Aabakken L, Johansen KS, Rydningen EB, Bredesen JE, Ovrebo S, Jacobsen D (1994) Hum Exp Toxicol 13:131

    Article  CAS  Google Scholar 

  47. Collins DW, Black JL, Mastaglia FL (1978) J Neurol Sci 36:83

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported with the Project of the Ministry of Health of the Czech Republic 9/15/NAP, the Projects of the Charles University in Prague PRVOUK—P25/1LF/2, P26/1LF/2, and P28/1LF/6, and EU Project “Material—technical Research Base for the Diagnostics and Treatment of Environmentally caused and Oncological Disorders and their Risks, in the General University Hospital in Prague” (Reg. No. CZ.2.16/3.1.00/24.12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Nurieva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurieva, O., Kotikova, K., Urban, P. et al. Prevalence, dynamics, and biochemical predictors of optic nerve remyelination after methanol-induced acute optic neuropathy: a 2-year prospective study in 54 patients. Monatsh Chem 147, 239–249 (2016). https://doi.org/10.1007/s00706-015-1580-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-015-1580-y

Keywords

Navigation