Skip to main content

Advertisement

Log in

Simulated microgravity perturbs actin polymerization to promote nitric oxide-associated migration in human immortalized Eahy926 cells

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Microgravity causes endothelium dysfunctions and vascular endothelium remodeling in astronauts returning from space flight. Cardiovascular deconditioning occurs as a consequence of an adaptive response to microgravity partially due to the effects exerted at cellular level. Directional migration of endothelial cell which are central in maintaining the structural integrity of vascular walls is regulated by chemotactic, haptotactic, and mechanotactic stimuli which are essential for vasculogenesis. We explored the migration property of transformed endothelial cells (EC) exposed to 2-h microgravity, simulated using a three-dimensional clinostat constructed based on blueprint published by the Fokker Space, Netherlands. Migration of EC was measured using the scrap wound healing in the presence or absence of actin polymerization inhibitor—cytochalasin D (CD) in Eahy926 cell lines. Simulated microgravity increased cellular migration by 25% while CD-blocked microgravity induced cellular migration. The key migratory structures of cells, filopodia and lamellipodia, formed by EC were more in simulated microgravity compared to gravity. Parallel experiments with phalloidin and diaminorhodamine-4M (DAR-4M) showed that simulated microgravity caused actin rearrangements that lead to 25% increase in nitric oxide production. Further nitric oxide measurements showed a higher nitric oxide production which was not abrogated by phosphoinositol 3 kinase inhibitor (Wortmanin). Bradykinin, an inducer of nitric oxide, prompted two folds higher nitric oxide production along with simulated microgravity in a synergistic manner. We suggest that limited exposure to simulated microgravity increases Eahy926 cell migration by modulating actin and releasing nitric oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bruce A, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, Taylor & Francis Group, New York, p 908, 931, 973–975

    Google Scholar 

  • Buchen B, Hoson T, Kamisaka S, Masuda Y, Sievers A (1993) Development of statocyte polarity under simulated microgravity on a 3-D clinostat. Biol Sci Space 7:111–115

    Article  Google Scholar 

  • Buravkova L, Romanov Y, Rykova M, Grigorieva O, Merzlikina N (2005) Cell-to-cell interactions in changed gravity: ground-based and flight experiments. Acta Astronaut 57:67–74

    Article  PubMed  CAS  Google Scholar 

  • Carlsson SI, Bertilaccio MT, Ascari I, Bradamante S, Maier JA (2002) Modulation of human endothelial cell behaviour in simulated microgravity. J Gravit Physiol 9:273–274

    Google Scholar 

  • Carlsson SI, Bertilaccio MT, Ballabio E, Maier JA (2003) Endothelial stress by gravitational unloading: effects on cell growth and cytoskeletal organization. Biochim Biophys Acta 1642:173–179

    Article  PubMed  CAS  Google Scholar 

  • Carter SB (1967) Effects of cytochalasins on mammalian cells. Nature 213:261–264

    Article  PubMed  CAS  Google Scholar 

  • Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, Barnathan ES, McCrae KR, Hug BA, Schmidt AM, Stern DM (1998) Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91:3527–356

    PubMed  CAS  Google Scholar 

  • Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605

    Article  PubMed  CAS  Google Scholar 

  • Edgell CJ, McDonald CC, Graham JB (1983) Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci USA 80:3734–3737

    Article  PubMed  CAS  Google Scholar 

  • Gail MH, Boone CW (1971) Cytochalasin effects on BALB-3T3 fibroblasts: dose-dependent, reversible alteration of motility and cytoplasmic cleavage. Exp Cell Res 68:226–228

    Article  PubMed  CAS  Google Scholar 

  • Geary GG, Krause DN, Purdy RE, Duckles SP (1998) Simulated microgravity increases myogenic tone in rat cerebral arteries. J Appl Physiol 85:1615–1621

    PubMed  CAS  Google Scholar 

  • Girn HR, Ahilathirunayagam S, Mavor AI, Homer-Vanniasinkam S (2007) Reperfusion syndrome: cellular mechanisms of microvascular dysfunction and potential therapeutic strategies. Vasc Endovascular Surg 41:277–293

    Article  PubMed  Google Scholar 

  • Grimm D, Bauer J, Kossmehl P, Shakibaei M, Schoberger J, Pickenhahn H, Schulze-Tanzil G, Vetter R, Eilles C, Paul M, Cogoli A (2002) Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells. FASEB J 16:604–606

    PubMed  CAS  Google Scholar 

  • Gruener R, Roberts R, Reitstetter R (1994) Reduced receptor aggregation and altered cytoskeleton in cultured myocytes after space-flight. Biol Sci Space 8:79–93

    Article  PubMed  CAS  Google Scholar 

  • Hattori Y, Kasai K (2004) Disruption of the actin cytoskeleton up-regulates iNOS expression in vascular smooth muscle cells. J Cardio Pharma 43:209–213

    Article  CAS  Google Scholar 

  • Hirasaka K, Nikawa T, Yuge L, Ishihara I, Higashibata A, Ishioka N, Okubo A, Miyashita T, Suzue N, Ogawa T, Oarada M, Kishi K (2005) Clinorotation prevents differentiation of rat myoblastic L6 cells in association with reduced NF-kappa B signaling. Biochim Biophys Acta 1743:130–140

    Article  PubMed  CAS  Google Scholar 

  • Huang C, Jacobson K, Schaller MD (2004) MAP kinases and cell migration. J Cell Sci 117:4619–4628

    Article  PubMed  CAS  Google Scholar 

  • Hughes-Fulford M, Nelson K, Blaug S, Summer CG, Lukefahr BD, Lewis ML (1993) MC3T3 osteoblasts grown in microgravity on STS-56 have reduced cell growth, glucose utilization with altered actin cytoskeleton and increased prostaglandin synthesis. ASGSB Bulletin 7:31

    Google Scholar 

  • Huijser RH (2000) Desktop RPM: new small size microgravity simulator for the bioscience laboratory. FS-MG-0017, Fokker Space

  • Ichigi J, Asashima M (2002) Dome formation and tubule morphogenesis by Xenopus kidney A6 cell cultures exposed to microgravity simulated with a 3D-clinostat and to hypergravity. In Vitro Cell Dev Biol, Anim 37:31–44

    Article  Google Scholar 

  • Ingber DE (1999) How cells (might) sense gravity. FASEB J 13:S3–S15

    PubMed  CAS  Google Scholar 

  • Ji Y, Ferracci G, Warley A, Ward M, Leung KY, Samsuddin S, Lévêque C, Queen L, Reebye V, Pal P, Gkaliagkousi E, Seager M, Ferro A (2007) β-Actin regulates platelet nitric oxide synthase 3 activity through interaction with heat shock protein 90. Proc Natl Acad Sci USA 104:8839–8844

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki K, Smith RS Jr, Hsieh CM, Sun J, Chao J, Liao JK (2003) Activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway mediates nitric oxide-induced endothelial cell migration and angiogenesis. Mol Cell Biol 23:5726–5737

    Article  PubMed  CAS  Google Scholar 

  • Kumei Y, Morita S, Katano H, Akiyama H, Hirano M, Oyha K, Shimokawa H (2006) Microgravity signal ensnarls cell adhesion, cytoskeleton, and matrix proteins of rat osteoblasts: osteopontin, CD44, osteonectin, and alpha-tubulin. Ann N Y Acad Sci 1090:311–317

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Kang-Decker N, Chatterjee S, Yao J, Friedman S, Shah V (2005) Mechanisms of nitric oxide interplay with Rho GTPase family members in modulation of actin membrane dynamics in pericytes and fibroblasts. Am J Pathol 166:1861–1870

    PubMed  CAS  Google Scholar 

  • Lewis ML, Reynolds JL, Cubano LA, Hatton JP, Lawless BD, Piepmeier EH (1998) Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). FASEB J 12:1007–1018

    PubMed  CAS  Google Scholar 

  • Li Z, Song Y, Ma Y, Wei H, Liu C, Huang J, Wang N, Sha J, Sakurai F (2002) Influence of simulated microgravity on avian primordial germ cell migration and reproductive capacity. J Exp Zool 292:672–676

    Article  PubMed  Google Scholar 

  • Li S, Huang NF, Hsu S (2005) Mechanotransduction in endothelial cell migration. J Cell Biochem 96:1110–1126

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Kahwaji CI, Ni Z, Vaziri ND, Purdy RE (2003) Effects of simulated microgravity on arterial nitric oxide synthase and nitrate and nitrite content. J Appl Physiol 94:83–92

    PubMed  CAS  Google Scholar 

  • Martin SJ, Cotter TG (1990) Disruption of microtubules induces an endogenous suicide pathway in human leukaemia HL-60 cells. Cell Tissue Kinet 23:545–559

    PubMed  CAS  Google Scholar 

  • Nims RW, Cook JC, Krishna MC, Christodoulou D, Poore CM, Miles AM (1996) Colorimetric assays for nitric oxide and nitrogen oxide species formed from nitric oxide stock solutions and donor compounds. Methods Enzymol 268:93–105

    Article  PubMed  CAS  Google Scholar 

  • Papaseit C, Pochon N, Tabony J (2000) Microtubule self-organization is gravity-dependent. Proc Natl Acad Sci USA 8:8364–8368

    Article  Google Scholar 

  • Pfeffer W (1990) Pflanzenphysiologie. 2. Aufl. Engelmann Leipzig.

  • Plett PA, Abonour R, Frankovitz SM, Orschell CM (2004) Impact of modeled microgravity on migration, differentiation and cell cycle control of primitive human hematopoietic progenitor cells. Exp Hematol 32:773–781

    Article  PubMed  CAS  Google Scholar 

  • Romanov IuA, Kabaeva NV, Buravkova LB (2001) Alterations in actin cytoskeleton and rate of reparation of human endothelium (the wound-healing model) under the condition of clinostatting. Aviakosm Ekolog Med 35:37–40

    PubMed  Google Scholar 

  • Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126

    Article  PubMed  CAS  Google Scholar 

  • Rousseau S, Houle F, Landry J, Huot J (1997) p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 15:2169–2177

    Article  PubMed  CAS  Google Scholar 

  • Rubanyi GM (1993) The role of endothelium in cardiovascular homeostasis and diseases. J Cardiovasc Pharmacol 22:S1–S4

    Article  PubMed  CAS  Google Scholar 

  • Sachs J (1882) Ueber Ausschliessung der geotropischen und heliotropischen Krummungen wahrend des Wachsens. Arb Bot Inst Wurzburg Bd 2:209–225

    Google Scholar 

  • Sakar D, Nagaya T, Koga K, Seo H (1999) Culture in vector-averaged gravity environment in a clinostat results in detachment of osteoblastic ROS 17/2.8. Cells Environmental Medicine 43:22–24

    Google Scholar 

  • Sampath P, Pollard TD (1991) Effects of cytochalasin, phalloidin and pH on the elongation of actin filaments. Biochemistry 30:1973–1980

    Article  PubMed  CAS  Google Scholar 

  • Sarkar D, Nagaya T, Koga K, Nomura Y, Gruener R, Seo H (2000) Culture in vector-averaged gravity under clinostat rotation results in apoptosis of osteoblastic ROS 17/2.8 cells. J Bone Miner Res 15:489–498

    Article  PubMed  CAS  Google Scholar 

  • Searles CD, Ide L, Davis ME, Cai H, Weber M (2004) Actin cytoskeleton organization and posttranscriptional regulation of endothelial nitric oxide synthase during cell growth. Circ Res 95:488–495

    Article  PubMed  CAS  Google Scholar 

  • Sessa WC (2005) Regulation of endothelial derived nitric oxide in health and disease. Mem Inst Oswaldo Cruz 1:15–18

    Google Scholar 

  • Small VJ, Vignala E, Rottnerb K (2002) The lamellipodium: where motility begins. Trends Cell Biol 12:112–120

    Article  PubMed  CAS  Google Scholar 

  • Spooner BS, Yamada KM, Wessells NK (1971) Microfilaments and cell locomotion. J Cell Biol 49:595–613

    Article  PubMed  CAS  Google Scholar 

  • Su Y, Edwards-Bennett S, Bubb MR, Block ER (2003) Block. Regulation of endothelial nitric oxide synthase by the actin cytoskeleton. Am J Physiol Cell Physiol 284:1542–1549

    Google Scholar 

  • Sundaresan A, Risin D, Pellis NR (2002) Loss of signal transduction and inhibition of lymphocyte locomotion in a ground-based model of microgravity. In Vitro Cell Dev Biol, Anim 38:118–122

    Article  Google Scholar 

  • Takahashi K, Sawasaki Y, Hata J, Mukai K, Goto T (1990) Spontaneous transformation and immortalization of human endothelial cells. In Vitro Cell Dev Biol 26:265–74

    Article  PubMed  CAS  Google Scholar 

  • Uva BM, Masini MA, Sturla M, Prato P, Passalacqua M, Giuliani M, Tagliafierro G, Strollo F (2002) Clinorotation-induced weightlessness influences the cytoskeleton of glial cells in culture. Brain Res 934:132–139

    Article  PubMed  CAS  Google Scholar 

  • van Hinsbergh VWM (1996) Vascular control of hemostasis, advances in vascular biology, vol 1. Harwood Academic Publishers, New York

    Google Scholar 

  • Versari S, Villa A, Bradamante S, Maier JA (2007) Alterations of the actin cytoskeleton and increased nitric oxide synthesis are common features in human primary endothelial cell response to changes in gravity. Biochim Biophys Acta 1773:1645–52

    Article  PubMed  CAS  Google Scholar 

  • Walther I, Pippia P, Meloni MA, Turrini F, Mannu F, Cogoli A (1998) Simulated microgravity inhibits the genetic expression of interleukin-2 and its receptor in mitogen-activated T lymphocytes. FEBS Lett 436:115–118

    Article  PubMed  CAS  Google Scholar 

  • Wessells NK, Spooner BS, Ash JF, Bradley MO, Luduena MA, Taylor EL, Wrenn JT, Yamaa K (1971) Microfilaments in cellular and developmental processes. Science 171:135–43

    Article  PubMed  CAS  Google Scholar 

  • Woods CC, Banks KE, Gruener R, DeLuca D (2003) Loss of T cell precursors after spaceflight and exposure to vector-averaged gravity. FASEB J 17:1526–1528

    PubMed  CAS  Google Scholar 

  • Yates BJ, Kerman IA (1998) Post-spaceflight orthostatic intolerance: possible relationship to microgravity-induced plasticity in the vestibular system. Brain Res Brain Res Rev 28:73–82

    Article  PubMed  CAS  Google Scholar 

  • Zeng C, Morrison AR (2001) Disruption of the actin cytoskeleton regulates cytokine-induced iNOS expression. Am J Physiol Cell Physiol 281:C932–C940

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful to Mr. K.P. Tamilarasan and Mr. Karthikeyan Pasupathy for their technical assistance in fabricating the microgravity machine. We also acknowledge the K.B. Chandrashekar Research Foundation for the financial support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvro Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siamwala, J.H., Reddy, S.H., Majumder, S. et al. Simulated microgravity perturbs actin polymerization to promote nitric oxide-associated migration in human immortalized Eahy926 cells. Protoplasma 242, 3–12 (2010). https://doi.org/10.1007/s00709-010-0114-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0114-z

Keywords

Navigation