Skip to main content

Advertisement

Log in

Advanced glycation end products and diabetic retinopathy

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Retinopathy is a serious microvascular complication of diabetes and a major cause of blindness in young adults, worldwide. Early diabetic retinopathy is characterized by a loss of pericytes from retinal capillaries, the appearance of acellular capillaries and microaneurysms, and a breakdown of the blood–retinal barrier. In later stages, this can evolve into the proliferative phase in which there is neovascularization of the retina, which greatly increases the probability of vision loss. Advanced glycation end products (AGEs) which accumulate under hyperglycemic conditions are thought to play an important role in the pathogenesis of diabetic retinopathy. AGEs arise primarily by the modification of amine groups of proteins by reactive dicarbonyls such as methylglyoxal. Intracellular proteins including anti-oxidant enzymes, transcription factors and mitochondrial proteins are targets of dicarbonyl modification and this can modify their functional properties and thus compromise cellular physiology. Likewise, modification of extracellular proteins by dicarbonyls can impair cell adhesion and can generate ligands that can potentially bind to cell surface AGE receptors that activate pro-inflammatory signaling pathways. AGE inhibitors have been shown to provide protection in animal models of diabetic retinopathy and currently are being evaluated in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abordo EA, Minhas HS, Thornalley PJ (1999) Accumulation of a-oxoaldehydes during oxidative stress: a role in cytotoxicity. Biochem Pharmacol 58:641–648

    PubMed  CAS  Google Scholar 

  • Ahmed N, Thornalley PJ (2007) Advanced glycation endproducts: what is their relevance to diabetic complications. Diabetes Obes Metab 9:233–245

    PubMed  CAS  Google Scholar 

  • Ahmed N, Thornalley PJ, Dawczynski J, Franke S, Strobel J, Stein G, Haik GM (2003) Methylglyoxal-derived hydroimidazolone advanced glycation end-products of human lens proteins. Invest Ophthalmol Vis Sci 44:5287–5292

    PubMed  Google Scholar 

  • Aiello LP, Gardner TW, King GL, Blankenship G, Cavallerano JD, Ferris FL3, Klein R (1998) Diabetic retinopathy. Diabetes Care 21:143–156

  • Alkhalaf A, Klooster A, van Oeveren W, Achenbach U, Kleestra N, Slingerland RJ, Mijnhout GS, Bilo HJG, Gans ROB, Navis GJ, Barker SJL (2010) A double-blind, randomized, placebo-controlled clinical trial on benfotiamine treatment in patients with diabetic nephropathy. Diabetes Care 33:1598–1601

    PubMed  CAS  Google Scholar 

  • Allt G, Lawrenson JG (2001) Pericytes: cell biology and pathology. Cells Tissues Organs 169:1–11

    PubMed  CAS  Google Scholar 

  • Antonelli-Orlidge A, Saunders KB, Smith SR, D’Amore PA (1989) An activated form of transforming growth factor beta is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci USA 86:4544–4548

    PubMed  CAS  Google Scholar 

  • Antonetti DA, Barber AJ, Khin S, Lieth E, Tarbell JM, Gardner TW (1998) Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Penn State Retina Research Group. Diabetes 47:1953–1959

    PubMed  CAS  Google Scholar 

  • Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523

    PubMed  CAS  Google Scholar 

  • Babaei-Jadidi R, Karachalias N, Ahmed N, Battah S, Thornalley PJ (2003) Prevention of incipient diabtic nepthropathy by high-dose thiamine and benfotiamine. Diabetes 52:2110–2120

    PubMed  CAS  Google Scholar 

  • Barile GR, Pachydaki S, Tan SR, Lee SE, Donmoyer CM, Ma W, Rong LL, Buciarelli LG, Wendt T, Horig H, Hudson BI, Qu W, Weinberg AD, Yan SF, Schmidt AM (2005) The RAGE axis in early diabetic retinopathy. Invest Ophthalmol Vis Sci 46:2916–2924

    PubMed  Google Scholar 

  • Barile GR, Schmidt AM (2007) RAGE and its ligands in retinal disease. Curr Mol Med 7:758–765

    PubMed  CAS  Google Scholar 

  • Beltramo E, Pomero F, Allione A, D’Alu F, Ponte E, Porta M (2002) Pericyte adhesion is impaired on extracellular matrix produced by endothelial cells in high hexose concentrations. Diabetologia 45:416–419

    PubMed  CAS  Google Scholar 

  • Benjamin LE, Hemo I, Keshet E (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125:1591–1598

    PubMed  CAS  Google Scholar 

  • Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol 7:452–464

    PubMed  CAS  Google Scholar 

  • Bhatwadekar AD, Glenn JV, Figarola JL, Scott S, Gardiner TA, Rahbar S, Stitt AW (2008a) A new advanced glycation inhibitor, LR-90, prevents experimental diabetic retinopathy in rats. Br J Ophthalmol 92:545–547

    PubMed  CAS  Google Scholar 

  • Bhatwadekar AD, Glenn JV, Li G, Curtis TM, Gardiner TA, Stitt AW (2008b) Advanced glyation of fibronectin impairs vascular repair by endothelial progenitor cells: implications for vasodegeneration in diabetic retinopathy. Invest Ophthalmol Vis Sci 49:1232–1241

    PubMed  Google Scholar 

  • Bidasee KR, Nallani K, Yu YQ, Cocklin RR, Zhang YN, Wang M, Dincer ÜD, Besch HR Jr (2003) Chronic diabetes increases advanced glycation end products on cardiac ryanodine receptors/calcium release channels. Diabetes 52:1825–1836

    PubMed  CAS  Google Scholar 

  • Bidasee KR, Zhang Y, Shao CH, Wang M, Patel KP, Dincer ÜD, Besch HR Jr (2004) Diabetes increases formation of advanced glycation end products on sarco(endo)plasmic reticulum Ca2+-ATPase. Diabetes 53:463–473

    PubMed  CAS  Google Scholar 

  • Boehm BO, Lang G, Volpert O, Jehle PM, Kurkhaus A, Rosinger S, Lang GK, Bouck N (2003) Low content of the natural ocular anti-angiogenic agent pigment epithelium-derived factor (PEDF) in aqueous humor predicts progression of diabetic retinopathy. Diabetologia 46:394–400

    PubMed  CAS  Google Scholar 

  • Bolton SJ, Anthony DC, Perry VH (1998) Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood–brain barrier breakdown in vivo. Neuroscience 86:1245–1257

    PubMed  CAS  Google Scholar 

  • Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Müller cells in the healthy and diseased retina. Prog Retin Eye Res 25:397–424

    PubMed  CAS  Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    PubMed  CAS  Google Scholar 

  • Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625

    PubMed  CAS  Google Scholar 

  • Brunner S, Schernthaner GH, Satler M, Elhenicky M, Hoellerl F, Schmid-Kubista KE, Zeiler F, Binder S, Schernthaner G (2009) Correlation of different circulating endothelial progenitor cells to stages of diabetic retinopathy-first in vivo data. Invest Ophthalmol Vis Sci 9:392–398

    Google Scholar 

  • Bucciarelli LG, Wendt T, Qu W, Lu Y, Lalla E, Rong LL, Goova MT, Moser B, Kislinger T, Lee DC, Kashyap YK, Stern DM, Schmidt AM (2002a) RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E-null mice. Circulation 106:2827–2835

    PubMed  CAS  Google Scholar 

  • Bucciarelli LG, Wendt T, Rong L, Lalla E, Hofmann MA, Goova MT, Taguchi A, Yan SF, Yan SD, Stern DM, Schmidt AM (2002b) RAGE is a multiligand receptor of the immunoglobulin superfamily: implications for homeostasis and chronic disease. Cell Mol Life Sci 59:1117–1128

    PubMed  CAS  Google Scholar 

  • Busik JV, Mohr S, Grant MB (2008) Hyperglycemia-induced reactive oxygen species toxicity to endothelial cells is dependent on paracrine mediators. Diabetes 57:1952–1965

    PubMed  CAS  Google Scholar 

  • Busik JV, Olson K, Grant MB, Henry DN (2002) Glucose-induced activation of glucose uptake in cells from the inner and outer blood–retinal barrier. Invest Ophthalmol Vis Sci 43:2356–2363

    PubMed  Google Scholar 

  • Caballero S, Sengupta N, Afzal A, Chang KH, Calzi SL, Guberski DL, Kern TS, Grant MB (2007) Ischemic vascular damage can be repaired by healthy, but not diabetic, endothelial progenitor cells. Diabetes 56:960–967

    PubMed  CAS  Google Scholar 

  • Cai J, Kehoe O, Smith GM, Hykin P, Boulton ME (2008) The angiopoietin/Tie-2 system regulates pericyte survival and recruitment in diabetic retinopathy. Invest Ophthalmol Vis Sci 49:2163–2171

    PubMed  Google Scholar 

  • Caldwell RB, Bartoli M, Behzadian MA, El-Remessy AE, Al-Shabrawey M, Platt DH, Caldwell RW (2003) Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Diabetes Metab Res Rev 19:442–455

    PubMed  CAS  Google Scholar 

  • Cameron AD, Olin B, Ridderstrøm M, Mannervik B, Jones TA (1997) Crystal structure of human glyoxalase I—evidence for gene duplication and 3D domain swapping. EMBO J 16:3386–3395

    PubMed  CAS  Google Scholar 

  • Cameron AD, Ridderstrøm M, Olin B, Kavarana MJ, Creighton DJ, Mannervik B (1999) Reaction mechanism of glyoxalase I explored by an X-ray crystallographic analysis of the human enzyme in complex with a transition state analogue. Biochemistry 38:13480–13490

    PubMed  CAS  Google Scholar 

  • Chavakis T, Bierhaus A, Al-Fakhri N, Achneider D, Witte S, Linn T, Bagashima M, Morser J, Arnold B, Preissner KT, Nawroth PP (2003) The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med 198:1507–1515

    PubMed  CAS  Google Scholar 

  • Chibber R, Molinatti PA, Kohner EM (1999) Intracellular protein glycation in cultured retinal capillary pericytes and endothelial cells exposed to high-glucose concentration. Cell Mol Biol 45:47–57

    PubMed  CAS  Google Scholar 

  • Chibber R, Molinatti PA, Rosatto N, Lambourne B, Kohner EM (2004) Toxic action of advanced glycation end products on cultured retinal capillary pericytes and endothelial cells: relevance to diabetic retinopathy. Diabetologia 40:156–164

    Google Scholar 

  • Cordell PA, Futers TS, Grant PJ, Pease RJ (2004) The human hydroxyacylglutathione hydrolase (HAGH) gene encodes both cytoplasmic and mitochondrial forms of glyoxalase II. J Biol Chem 279:28653–28661

    PubMed  CAS  Google Scholar 

  • Cunha-Vaz J, Faria de Abreu JR, Campos AJ (1975) Early breakdown of the blood–retinal barrier in diabetes. Brit J Opthalmol 59:649–656

    CAS  Google Scholar 

  • Curtis TM, Hamilton R, Yong PH, McVicar CM, Berner A, Pingle R, Uchida K, Nagai R, Brockbank S, Stitt AW (2011) Müller glial dysfunction during diabetic retinopathy in rats is linked to the accumulation of advanced glycation end-products and advanced lipoxidation end-products. Diabetologia 54:690–698

    PubMed  CAS  Google Scholar 

  • Darland DC, Massingham LJ, Smith SR, Piek E, Saint-Geniez M, D’Amore PA (2004) Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Dev Biol 264:275–288

    Google Scholar 

  • De La Cruz JP, Gonzalez-Correa JA, Guerrero A, de la Ceusta FS (2004) Pharmacological approach to diabetic retinopathy. Diabetes Metab Res Rev 20:91–113

    PubMed  Google Scholar 

  • Deane R, Yan SD, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Schmidt AM, Armstrong DL, Arnold B, Liliensiek B, Nawroth P, Hofman F, Kindy M, Stern D, Zlokovic B (2003) RAGE mediates amyloid-b peptide transport across the blood-brain barrier and accumulation in brain. Nature Med 9:907–913

    PubMed  CAS  Google Scholar 

  • Del Maschio A, Zanetti A, Corada M, Rival Y, Ruco L, Lampugnani MG, Dejana E (1996) Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions. J Cell Biol 135:497–510

    PubMed  CAS  Google Scholar 

  • Deng YL, Yu PH (2004) Assessment of the deamination of aminoacetone, an endogenous substrate for semicarbazide-sensitive amine oxidase. Anal Biochem 270:97–102

    Google Scholar 

  • Du J, Zeng J, Ou X, Ren X, Cai S (2007) Methylglyoxal downregulates Raf-1 protein through a ubiquitination-mediated mechanism. Int J Biochem Cell Biol 38:1084–1091

    Google Scholar 

  • Du X, Edelstein D, Brownlee M (2008) Oral benfotiamine plus a-lipoic acid normalizes complication-causing pathways in type 1 diabetes. Diabetologia 51:1930–1932

    PubMed  CAS  Google Scholar 

  • Du X, Matsumura T, Edelstein D, Rossetti L, Zsengellér Z, Szabó C, Brownlee M (2003) Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 112:1049–1057

    PubMed  CAS  Google Scholar 

  • Ejaz S, Chekarova I, Ejaz A, Sohail A, Lim CW (2008) Importance of pericytes and mechanisms of pericyte loss during diabetes retinopathy. Diabetes Obes Metab 10:53–63

    PubMed  CAS  Google Scholar 

  • El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG, Cooper ME, Brownlee M (2008) Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med 205:2409–2417

    PubMed  CAS  Google Scholar 

  • Enge M, Bjarnegard M, Gerhardt H, Gustafsson E, Kalen M, Asker N, Hammes HP, Shani M, Fassler R, Betsholtz C (2002) Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J 21:4307–4316

    PubMed  CAS  Google Scholar 

  • Feng Y, Vom Hagen F, Pfisterer F, Djokic S, Hoffmann S, Back W, Wagner P, Deutsch LJ, Hammes HP (2007) Impaired recruitment and abnormal retinal angiogenesis as a result of angiopoietin-2 overexpression. Thromb Haemost 97:99–108

    PubMed  CAS  Google Scholar 

  • Fosmark DS, Torjesen PA, Kilhovd BK, Berg TJ, Sandvik L, Hanssen KF, Agardh CD, Agardh E (2006) Increased serum levels of the specific advanced glycation end product methylglyoxal-derived hydroimidazolone are associated with retinopathy in patients with type 2 diabetes mellitus. Metabolism 55:232–236

    PubMed  CAS  Google Scholar 

  • Frank RN (2004) Diabetic retinopathy. N Engl J Med 350:48–58

    PubMed  CAS  Google Scholar 

  • Frank RN, Dutta S, Mancini MA (1987) Pericyte coverage is greater in the retinal than in the cerebral capillaries of the rat. Invest Ophthalmol Vis Sci 28:1086–1091

    PubMed  CAS  Google Scholar 

  • Frank RN, Turczyn TJ, Das A (1990) Pericyte coverage of retinal and cerebral capillaries. Invest Ophthalmol Vis Sci 31:999–1007

    PubMed  CAS  Google Scholar 

  • Fu MX, Requena JR, Jenkins AJ, Lyons TJ, Baynes JW, Thorpe SR (1996) The advanced glycation end product, Ne-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions. J Biol Chem 271:9982–9986

    PubMed  CAS  Google Scholar 

  • Genuth S, Sun W, Cleary P, Sell DR, Dahms W, Malone J, Sivitz W, Monnier VM (2005) Glycation and carboxymethyllysine levels in skin collagen predict the risk of future 10-year progression of diabetic retinopathy and nephropathy in the diabetes control and complications trial and epidemiology of diabetes interventions and complications participants with type 1 diabetes. Diabetes 54:3103–3111

    PubMed  CAS  Google Scholar 

  • Goh SY, Cooper ME (2008) The role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metab 93:1143–1152

    PubMed  CAS  Google Scholar 

  • Hammes HP, Alt A, Niwa T, Clausen JT, Bretzel RG, Brownlee M, Schleicher ED (1999) Differential accumulation of advanced glycation end products in the course of diabetic retinopathy. Diabetologia 42:728–736

    PubMed  CAS  Google Scholar 

  • Hammes HP, Du X, Edelstein D, Taguchi T, Matsumura T, Ju Q, Lin J, Bierhaus A, Nawroth P, Hannak D, Neumaier M, Bergfeld R, Giardino I, Brownlee M (2003) Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nature Med 9:294–299

    PubMed  CAS  Google Scholar 

  • Hammes HP, Lin J, Renner O, Shani M, Lundqvist A, Betsholtz C, Brownlee M, Deutsch U (2004a) Pericytes and the pathogenesis of diabetic retinopathy. Diabetes 51:3107–3112

    Google Scholar 

  • Hammes HP, Lin J, Wagner P, Feng Y, Vom Hagen F, Krzizok T, Renner O, Breier G, Brownlee M, Deutsch U (2004b) Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for involvement in diabetic retinopathy. Diabetes 53:1104–1110

    PubMed  CAS  Google Scholar 

  • Hammes HP, Feng Y, Pfister F, Brownlee M (2011) Diabetic retinopathy: targeting vasoregression. Diabetes 60:9–16

    PubMed  CAS  Google Scholar 

  • Hanahan D (1997) Signaling vascular morphogenesis and maintenance. Science 277:48–50

    PubMed  CAS  Google Scholar 

  • Heizmann CW (2007) The mechanism by which dietary AGEs are a risk to human health is via their interaction with RAGE: arguing against the motion. Molec Nut Food Res 51:1116–1119

    CAS  Google Scholar 

  • Hellström I, Gerhardt H, Kalén M, Li X, Eriksson U, Wolburg H, Betsholtz C (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153:543–553

    PubMed  Google Scholar 

  • Hellström I, Kalen M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–3055

    PubMed  Google Scholar 

  • Hirschi KK, Rohovsky SA, D’Amore PA (1998) PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141:805–814

    PubMed  CAS  Google Scholar 

  • Hofmann MA, Drury S, Fu CF, Qu W, Taguchi A, Lu Y, Avila C, Kambham N, Bierhaus A, Nawroth P, Neurath MF, Slattery T, Beach D, McClary J, Nagashima M, Morser J, Stern D, Schmidt AM (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97:889–901

    PubMed  CAS  Google Scholar 

  • Hori O, Brett J, Slattery T, Cao R, Zhang J, Chen JX, Nagashima M, Lundh ER, Vijay S, Nitecki D, Morser J, Stern D, Schmidt AM (1995) The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem 270:25752–25761

    PubMed  CAS  Google Scholar 

  • Hudson BI, Bucciarelli LG, Wendt T, Sakaguchi T, Lalla E, Qu W, Lu Y, Lee L, Stern DM, Naka Y, Ramsamy R, Yan S-D, Yan SF, D’Agati V, Schmidt AM (2003) Blockade of receptor for advanced glycation endproducts: a new target for therapeutic intervention in diabetic complications and inflammatory disorders. Arch Biochem Biophys 419:80–88

    PubMed  CAS  Google Scholar 

  • Huebschmann AG, Regensteiner JG, Vlassara H, Reusch JEB (2006) Diabetes and advanced glycoxidation end products. Diabetes Care 29:1420–1432

    PubMed  CAS  Google Scholar 

  • Januszewski AS, Alderson NL, Thorpe SR, Baynes JW (2003) Role of lipids in chemical modification of proteins and development of complications in diabetes. Biochem Soc Trans 31:1413–1416

    PubMed  CAS  Google Scholar 

  • Joussen AM (2001) Vascular plasticity–the role of the angiopoietins in modulating ocular angiogenesis. Graefes Arch Clin Exp Ophthalmol 239:972–975

    PubMed  CAS  Google Scholar 

  • Joussen AM, Poulaki V, Le ML, Koizumi K, Esser C, Janicki H, Schraermeyer U, Kociok N, Fauser S, Kirchhof B, Kern TS, Adamis AP (2004) A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J 18:1450–1452

    PubMed  CAS  Google Scholar 

  • Joussen AM, Poulaki V, Mitsiades N, Cai WY, Suzuma I, Pak J, Ju ST, Rook SL, Esser P, Mitsiades CS, Kirchhof B, Adamis AP, Aiello LP (2003) Suppression of Fas-FasL-induced endothelial cell apoptosis prevents diabetic blood-retinal barrier breakdown in a model of streptozotocin-induced diabetes. FASEB J 17:76–78

    PubMed  CAS  Google Scholar 

  • Joussen AM, Poulaki V, Tsujikawa A, Qin W, Qaum T, Xu Q, Moromizato Y, Bursell SE, Wiegand SJ, Rudge J, Ioffe E, Yancopoulos GD, Adamis AP (2002) Suppression of diabetic retinopathy with angiopoietin-1. Am J Pathol 160:1683–1693

    PubMed  CAS  Google Scholar 

  • Kaji Y, Usui T, Ishida S, Moore TCB, Moore J, Yamamoto Y, Yamamoto H, Adamis AP (2007) Inhibition of diabetic leukostasis and blood-retinal barrier breakdown with a soluble form of a receptor for advanced glycation end products. Invest Ophthalmol Vis Sci 48:858–865

    PubMed  Google Scholar 

  • Kanwar M, Kowluru RA (2009) Role of glyceraldehyde 3-phosphate dehydrogenase in the the development and progression of diabetic retinopathy. Diabetes 58:227–234

    PubMed  CAS  Google Scholar 

  • Kim NS, Umezawa Y, Ohmura S, Kato S (1993) Human glyoxalase I. cDNA cloning, expression, and sequence similarity to glyoxalase I from Pseudomonas putida. J Biol Chem 268:11217–11221

    PubMed  CAS  Google Scholar 

  • Li YH, Lu WY, Schwartz AL, Bu GJ (2002) Receptor-associated protein facilitates proper folding and maturation of the low-density lipoprotein receptor and its class 2 mutants. Biochemistry 41:4921–4928

    PubMed  CAS  Google Scholar 

  • Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245

    PubMed  CAS  Google Scholar 

  • Liu B, Bhat M, Padival AK, Smith DG, Nagaraj RH (2004a) Effect of dicarbonyl modification of fibronectin on retinal capillary pericytes. Invest Ophthalmol Vis Sci 45:1983–1995

    PubMed  Google Scholar 

  • Liu H, Ren JG, Cooper WL, Hawkins CE, Cowan MR, Tong PY (2004b) Identification of the antivasopermeability effect of pigment epithelium-derived factor and its active site. Proc Natl Acad Sci USA 101:6605–6610

    PubMed  CAS  Google Scholar 

  • Liu M, Li Y, Cavener D, Arvan P (2005) Proinsulin disulfide maturation and misfolding in the endoplasmic reticulum. J Biol Chem 280:13209–13212

    PubMed  CAS  Google Scholar 

  • Lu M, Kuroki M, Amano S, Tolentino M, Keough K, Kim I, Bucala R, Adamis AP (1998) Advanced glycation end products increase retinal vascular endothelial growth factor expression. J Clin Invest 101:1219–1224

    PubMed  CAS  Google Scholar 

  • Mamputu JC, Renier G (2004) Advanced glycation end-products increase monocyte adhesion to retinal endothelial cells through vascular endothelial growth factor-induced ICAM-1 expression: inhibitory effect of antioxidants. J Leukoc Biol 75:1062–1069

    PubMed  CAS  Google Scholar 

  • Mamputu JC, Renier G (2002) Advanced glycation end products increase, through a protein kinase C-dependent pathway, vascular endothelial growth factor expression in retinal endothelial cells. Inhibitory effect of gliclazide. J Diabetes Complications 16:284–293

    PubMed  Google Scholar 

  • McLellan AC, Thornalley PJ, Benn J, Sonksen PH (1993) Population genetics of human glyoxalases and the development of diabetic complications. Biochem Soc Trans 21:172S

    PubMed  CAS  Google Scholar 

  • McLellan AC, Thornalley PJ, Benn J, Sonkson PH (1994) Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. Clin Sci 87:21–29

    PubMed  CAS  Google Scholar 

  • McLeod DS, Lefer DJ, Merges C, Lutty GA (1995) Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid. Am J Pathol 147:642–653

    PubMed  CAS  Google Scholar 

  • Miller AG, Smith DG, Bhat M, Nagaraj RH (2006) Glyoxalase I Is critical for human retinal capillary pericyte survival under hyperglycemic conditions. J Biol Chem 281:11864–11871

    PubMed  CAS  Google Scholar 

  • Miller AG, Tan G, Binger KJ, Pickering RJ, Thomas MC, Nagaraj RH, Cooper ME, Wilkinson-Berka JL (2010) Candesartan attenuates diabetic retinal vascular pathology by restoring glyoxalase-I function. Diabetes 59:3208–3215

    PubMed  CAS  Google Scholar 

  • Miyamoto K, Khosrof S, Bursell SE, Moromizato Y, Aiello LP, Ogura Y, Adamis AP (2000) Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability is mediated by intercellular adhesion molecule-1 (ICAM-1). Am J Pathol 156:1733–1739

    PubMed  CAS  Google Scholar 

  • Miyata T, de Strihou C, Imasawa T, Yoshino A, Ueda Y, Ogura H, Kominami K, Onogi H, Inagi R, Nangaku M, Kurokawa K (2001) Glyoxalase I deficiency is associated with an unusual level of advanced glycation end products in a hemodialysis patient. Kidney Int 60:2351–2359

    PubMed  CAS  Google Scholar 

  • Mizutani M, Kern TS, Lorenzi M (2004) Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J Clin Invest 97:2883–2890

    Google Scholar 

  • Mohamed Q, Wong TY (2008) Emerging drugs for diabetic retinopathy. Exp Opin Emerg Drugs 13:675–694

    CAS  Google Scholar 

  • Monnier VM, Bautista O, Kenny D, Sell DR, Fogarty J, Dahms W, Cleary PA, Lachin J, Genuth S (1999) Skin collagen glycaion, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes. Diabetes 48:870–880

    PubMed  CAS  Google Scholar 

  • Moore TCB, Moore JE, Kaji Y, Frizzell N, Usui T, Poulaki V, Campbell IL, Stitt AW, Gardiner TA, Archer DB, Pathog APPA (2003) The role of advanced glycation end products in retinal microvascular leukostasis. Invest Ophthalmol Vis Sci 44:4457–4464

    PubMed  Google Scholar 

  • Nambu H, Nambu R, Oshima Y, Hackett SF, Okoye G, Wiegand S, Yancopoulos G, Zack DJ, Ampochiaro PA (2004) Angiopoietin 1 inhibits ocular neovascularization and breakdown of the blood–retinal barrier. Gene Therapy 11:865–873

    PubMed  CAS  Google Scholar 

  • Navaratna D, McGuire PG, Menicucci G, Das A (2007) Proteolytic degradation of VE-cadherin alters the blood–retinal barrier in diabetes. Diabetes 56:2380–2387

    PubMed  CAS  Google Scholar 

  • Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oats PJ, Hammes HP, Giardino I, Brownlee M (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790

    PubMed  CAS  Google Scholar 

  • Nishikiori N, Osanai M, Chiba H, Kojima T, Mitamura Y, Ohguro H, Sawada N (2007) Glial cell-derived cytokines attenuate the breakdown of vascular integrity in diabetic retionpathy. Diabetes 56:1333–1340

    PubMed  CAS  Google Scholar 

  • Ohashi H, Takagi H, Koyama S, Oh H, Watanabe D, Antonetti DA, Matsubara T, Nagai K, Arai H, Kita T, Honda Y (2004) Alterations in expression of angiopoietins and the Tie-2 receptor in the retina of streptozotocin induced diabetic rats. Mol Vis 26:608–617

    Google Scholar 

  • Otero K, Martínez F, Beltrán A, González D, Herrera B, Quintero G, Delgado R, Rojas A (2001) Albumin-derived advanced glycation end-products trigger the disruption of the vascular endothelial cadherin complex in cultured human and murine endothelial cells. Biochem J 359:567–574

    PubMed  CAS  Google Scholar 

  • Peters S, Cree IA, Alexander R, Turowski P, Ockrim A, Patel J, Boyd SR, Joussen AM, Ziemssen F, Hykin PG, Moss SE (2007) Angiopoietin modulation of vascular endothelial growth factor: effects on retinal endothelial cell permeability. Cytokine 40:144–150

    PubMed  CAS  Google Scholar 

  • Pfister F, Feng Y, Vom Hagen F, Hoffmann S, Molema G, Hillebrands JL, Shani M, Deutsch U, Hammes HP (2008) Pericyte migration: a novel mechanism of pericyte loss in experimental diabetic retinopathy. Diabetes 57:2495–2502

    PubMed  CAS  Google Scholar 

  • Phillips SA, Mirrlees D, Thornalley PJ (1993) Modification of the glyoxalase system in streptozotocin-induced diabetic rats. Effect of the aldose reductase inhibitor Statil. Biochem Pharmacol 46:805–811

    PubMed  CAS  Google Scholar 

  • Podestà F, Romeo G, Liu WH, Krajewski S, Reed JC, Gerhardinger C, Lorenzi M (2000) Bax is increased in the retina of diabetic subjects and is associated with pericyte apoptosis in vivo and in vitro. Am J Pathol 156:1025–1032

    PubMed  Google Scholar 

  • Rabbani N, Thornalley PJ (2008) The dicarbonyl proteome. Proteins susceptible to dicarbonyl glycation at functional sites in health, aging and disease. Ann NY Acad Sci 1126:124–127

    PubMed  CAS  Google Scholar 

  • Ramasamy R, Yan SF, Schmidt AM (2007) Arguing for the motion: Yes, RAGE is a receptor for advanced glycation endproducts. Moc Nutr Food Res 51:1111–1115

    CAS  Google Scholar 

  • Ranganathan S, Ciaccio PJ, Walsh ES, Tew KD (1999) Genomic sequence of human glyoxalase-I: analysis of promoter activity and its regulation. Gene 240:149–155

    PubMed  CAS  Google Scholar 

  • Ranganathan S, Walseh ES, Godwin AK, Tew KD (1993) Cloning and characterization of human colon glyoxalase-I. J Biol Chem 268:5661–5667

    PubMed  CAS  Google Scholar 

  • Ratliff DM, Vander Jagt DJ, Eaton RP, Vander Jagt DL (1996) Increased levels of methylglyoxal-metabolizing enzymes in mononuclear and polymorphonuclear cells from insulin-dependent diabetic patients with diabetic complications: aldose reductase, glyoxalase I, and glyoxalase II—a clinical research center study. J Clin Endocrinol Metab 81:488–492

    PubMed  CAS  Google Scholar 

  • Robison WG Jr, Tillis TN, Laver N, Kinoshita JH (1990) Diabetes-related histopathologies of the rat retina prevented with an aldose reductase inhibitor. Exp Eye Res 50:355–366

    PubMed  CAS  Google Scholar 

  • Romeo G, Liu WH, Asnaghi V, Kern TS, Lorenzi M (2002) Activation of nuclear factor-kappaB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes 51:2241–2248

    PubMed  CAS  Google Scholar 

  • Saaddine JB, Honeycutt AA, Narayan KMV, Zhang X, Klein R, Boyle JP (2008) Projection of diabetic retinopathy and other major eye diseases among people with diabetes mellitus. Arch Opthalmol 126:1740–1747

    Google Scholar 

  • Sakamoto H, Mashima T, Kizaki A, Dan S, Hashimoto Y, Tsuruo T (2000) Glyoxalase I is involved in resistance of human leukemia cells to antitumor agent-induced apoptosis. Blood 95:3214–3218

    PubMed  CAS  Google Scholar 

  • Sato Y, Rifkin DB (1989) Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. J Cell Biol 109:315

    Google Scholar 

  • Schönfelder U, Hofer A, Paul M, Funk RHW (1998) In situ observation of living pericytes in rat retinal capillaries. Microvasc Res 56:22–29

    PubMed  Google Scholar 

  • Sebekova K, Somoza V (2007) Dietary advanced glycation endproducts (AGEs) and their health effects. Mol Nutr Food Res 51:1079–1084

    PubMed  CAS  Google Scholar 

  • Shinohara M, Thornalley PJ, Giardino I, Beisswenger P, Thorpe SR, Onorato J, Brownlee M (1998) Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J Clin Invest 101:1142–1147

    PubMed  CAS  Google Scholar 

  • Sima J, Zhang SX, Shao C, Fant J, Ma JX (2004) The effect of angiostatin on vascular leakage and VEGF expression in rat retina. FEBS Lett 564:19–23

    PubMed  CAS  Google Scholar 

  • Singh R, Barden A, Mori T, Beilin L (2001) Advanced glycation end-products: a review. Diabetologia 44:129–146

    PubMed  CAS  Google Scholar 

  • Stitt A, Gardiner TA, Anderson NL, Canning P, Frizzell N, Duffy N, Boyle C, Januszewski AS, Chachich M, Baynes JW, Thorpe SR (2002) The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes 51:2826–2832

    PubMed  CAS  Google Scholar 

  • Stitt AW (2003) The role of advanced glycation in the pathogenesis of diabetic retinopathy. Exp Mol Pathol 75:95–108

    PubMed  CAS  Google Scholar 

  • Stitt AW, Bhaduri T, McMullen CB, Gardiner TA, Archer DB (2004a) Advanced glycation end products induce blood-retinal barrier dysfunction in normoglycemic rats. Mol Cell Biol Res Commun 3:380–388

    Google Scholar 

  • Stitt AW, Hughes SJ, Canning P, Lynch O, Cox O, Frizzell N, Thorpe SR, Cotter TG, Curtis TM, Gardiner TA (2004b) Substrates modified by advanced glycation end-products cause dysfunction and death in retinal pericytes by reducing survival signals mediated by platelet-derived growth factor. Diabetologia 47:1735–1746

    PubMed  CAS  Google Scholar 

  • Stitt AW, Li YM, Gardiner TA, Bucala R, Archer DB, Vlassara H (1997) Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats. Am J Pathol 150:523–531

    PubMed  CAS  Google Scholar 

  • Sundberg C, Kowanetz M, Brown LF, Detmar M, Dvorak HF (2004) Stable expression of angiopoietin-1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Lab Invest 82:387–401

    Google Scholar 

  • Takeuchi M, Takino JI, Yamagishi SI (2010) Involvement of TAGE-RAGE system in the pathogenesis of diabetic retinopathy. J Ophthalmol 2010:170393

    PubMed  Google Scholar 

  • Thangarajah H, Yao D, Chang EI, Shi Y, Jazayeri L, Vial IN, Galiano RD, Du XL, Grogan R, Galvez MG, Januszyk M, Brownlee M, Gurtner GC (2009) The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc Natl Acad Sci USA 106:13505–13510

    PubMed  CAS  Google Scholar 

  • The Action to Control Cardiovascular Risk in Diabetes Study Group (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358:2545–2559

    Google Scholar 

  • The Advance Collaborative Group (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358:2560–2572

    Google Scholar 

  • Thornalley PJ (1993) The glyoxalase system in health and disease. Molec Aspects Med 14:287–371

    CAS  Google Scholar 

  • Thornalley PJ (1998) Glutathione-dependent detoxification of a-oxoaldehydes by the glyoxalase system: involvement in disease mechanisms and antiproliferative activity of glyoxalase I inhibitors. Chem Biol Interact 111–112:137–151

    PubMed  Google Scholar 

  • Thornalley PJ, Battah S, Ahmed N, Karachalias N, Agalou S, Babaei-Jadidi R, Dawnay A (2003) Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem J 375:581–592

    PubMed  CAS  Google Scholar 

  • Treins C, Giorgetti-Peraldi S, Murdaca J, Van Obberghen E (2001) Regulation of vascular endothelial growth factor expression by advanced glycation end products. J Biol Chem 276:43836–43841

    PubMed  CAS  Google Scholar 

  • Tretoacj M, Madigan MC, Wen L, Gillies MC (2008) Effect of Müller cell co-culture on in vitro permeability of bovine retinal vascular endothelium in normoxic and hypoxic conditions. Neurosci Lett 378:160–165

    Google Scholar 

  • Ulrich P, Cerami A (2001) Protein glycation, diabetes and aging. Recent Prog Horm Res 56:1–21

    PubMed  CAS  Google Scholar 

  • United Kingdom Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853

    Google Scholar 

  • Vasan S, Foiles P, Founds H (2003) Therapeutic potential of breakers of advanced glycation end product-protein crosslinks. Arch Biochem Biophys 419:89–96

    PubMed  CAS  Google Scholar 

  • Vincent JA, Mohr S (2007) Inhibition of caspase-1/interleukin-1b signaling prevents degeneration of retinal capillaries in diabetes and galactosemia. Diabetes 56:224–230

    PubMed  CAS  Google Scholar 

  • Vlassara H, Cai W, Crandall J, Goldberg T, Oberstein R, Dardaine V, Peppa M, Rayfield EJ (2002) Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci USA 99:15596–15601

    PubMed  CAS  Google Scholar 

  • Warboys CM, Toh HB, Fraser PA (2009) Advanced glycation end products rapidly increase retinal microvascular permeability via RAGE activation of NADPH oxidase. Invest Ophthalmol Vis Sci 50:1319–1328

    PubMed  Google Scholar 

  • Wolffenbuttel BH, Boulanger CM, Crijns FR, Huijberts MS, Poitevin P, Swennen GN, Vasan S, Egan JJ, Ulrich P, Cerami A, Levy BI (1998) Breakers of advanced glycation end products restore large artery properties in experimental diabetes. Proc Natl Acad Sci USA 95:4630–4634

    PubMed  CAS  Google Scholar 

  • Yamagishi S, Amano S, Inagaki Y, Okamoto T, Koga K, Sasaki N, Yamamoto H, Takeuchi M, Makita Z (2002) Advanced glycation end products-induced apoptosis and overexpression of vascular endothelial growth factor in bovine retinal pericytes. Biochem Biophys Res Commun 290:973–978

    PubMed  CAS  Google Scholar 

  • Yamagishi S, Hsu CC, Taniguchi M, Harada S, Yamamoto Y, Ohsawa K, Kobayashi K, Yamamoto H (2004) Receptor-mediated toxicity to pericytes of advanced glycosylation end products: a possible mechanism of pericyte loss in diabetic microangiopathy. Biochem Biophys Res Commun 213:681–687

    Google Scholar 

  • Yamagishi S, Ueda S, Okuda S (2007) Food-derived advanced glycation end products (AGEs): a novel therapeutic target for various disorders. Curr Pharm Des 13:2832–2836

    PubMed  CAS  Google Scholar 

  • Yan SF, Ramasamy R, Naka Y, Schmidt AM (2003) Glycation, inflammation, and RAGE. A scaffold for the macrovascular complications of diabetes and beyond. Circ Res 93:1159–1169

    PubMed  CAS  Google Scholar 

  • Yan S-D, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382:685–691

    PubMed  CAS  Google Scholar 

  • Yao D, Brownlee M (2009) Hyperglycemia-induced reactive oxygen species increase expression of RAGE and RAGE ligands. Diabetes 59:249–255

    PubMed  Google Scholar 

  • Yao D, Taguchi T, Matsumura T, Pestell R, Edelstein D, Giardino I, Suske G, Ahmed N, Thornalley PJ, Sarthy VP, Hammes HP, Brownlee M (2007) High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A. J Biol Chem 282:31038–31045

    PubMed  CAS  Google Scholar 

  • Zheng L, Szabó C, Kern TS (2004) Poly(ADP-Ribose) polymerase is involved in the development of diabetic retinopathy via regulation of nuclear factor-{kappa}B. Diabetes 53:2960–2967

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross Milne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milne, R., Brownstein, S. Advanced glycation end products and diabetic retinopathy. Amino Acids 44, 1397–1407 (2013). https://doi.org/10.1007/s00726-011-1071-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1071-3

Keywords

Navigation