Skip to main content
Log in

Insulin resistance and the metabolism of branched-chain amino acids in humans

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Peripheral resistance to insulin action is the major mechanism causing the metabolic syndrome and eventually type 2 diabetes mellitus. The metabolic derangement associated with insulin resistance is extensive and not restricted to carbohydrates. The branched-chain amino acids (BCAAs) are particularly responsive to the inhibitory insulin action on amino acid release by skeletal muscle and their metabolism is profoundly altered in conditions featuring insulin resistance, insulin deficiency, or both. Obesity, the metabolic syndrome and diabetes mellitus display a gradual increase in the plasma concentration of BCAAs, from the obesity-related low-grade insulin-resistant state to the severe deficiency of insulin action in diabetes ketoacidosis. Obesity-associated hyperinsulinemia succeeds in maintaining near-normal or slightly elevated plasma concentration of BCAAs, despite the insulin-resistant state. The low circulating levels of insulin and/or the deeper insulin resistance occurring in diabetes mellitus are associated with more marked elevation in the plasma concentration of BCAAs. In diabetes ketoacidosis, the increase in plasma BCAAs is striking, returning to normal when adequate metabolic control is achieved. The metabolism of BCAAs is also disturbed in other situations typically featuring insulin resistance, including kidney and liver dysfunction. However, notwithstanding the insulin-resistant state, the plasma level of BCAAs in these conditions is lower than in healthy subjects, suggesting that these organs are involved in maintaining BCAAs blood concentration. The pathogenesis of the decreased BCAAs plasma level in kidney and liver dysfunction is unclear, but a decreased afflux of these amino acids into the blood stream has been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adibi SA (1968) Influence of dietary deprivations on plasma concentration of free amino acids of man. J Appl Physiol 25:52–57

    PubMed  CAS  Google Scholar 

  • Alvestrand A, Defronzo RA, Smith D et al (1988) Influence of hyperinsulinaemia on intracellular amino acid levels and amino acid exchange across splanchnic and leg tissues in uraemia. Clin Sci (Lond) 74:155–163

    CAS  Google Scholar 

  • Aoki TT, Muller WA, Brennan MF et al (1973) Blood cell and plasma amino acid levels across forearm muscle during a protein meal. Diabetes 22:768–775

    PubMed  CAS  Google Scholar 

  • Aoki TT, Brennan MF, Müller WA et al (1976) Amino acid levels across normal forearm muscle and splanchnic bed after a protein meal. Am J Clin Nutr 29:340–350

    PubMed  CAS  Google Scholar 

  • Aoki TT, Brennan MF, Fitzpatrick GF et al (1981) Leucine meal increases glutamine and total nitrogen release from forearm muscle. J Clin Invest 68:1522–1528

    Article  PubMed  CAS  Google Scholar 

  • Berger M, Zimmermann-Telschow H, Berchtold P et al (1978) Blood amine acid levels in patients with insulin excess (functioning insulinoma) and insulin deficiency (diabetic ketosis). Metabolism 27:793–799

    Article  PubMed  CAS  Google Scholar 

  • Bergström J, Alvestrand A, Fürst P (1990) Plasma and muscle free amino acids in maintenance hemodialysis patients without protein malnutrition. Kidney Int 38:108–114

    Article  PubMed  Google Scholar 

  • Boirie Y, Broyer M, Gagnadoux MF et al (2000) Alterations of protein metabolism by metabolic acidosis in children with chronic renal failure. Kidney Int 58:236–241

    Article  PubMed  CAS  Google Scholar 

  • Caballero B, Wurtman RJ (1991) Differential effects of insulin resistance on leucine and glucose kinetics in obesity. Metabolism 40:51–58

    Article  PubMed  CAS  Google Scholar 

  • Canepa A, Filho JC, Gutierrez A et al (2002) 9 Free amino acids in plasma, red blood cells, polymorphonuclear leukocytes, and muscle in normal and uraemic children. Nephrol Dial Transplant 17:413–421

    Article  PubMed  CAS  Google Scholar 

  • Chang CF, Chou HT, Lin YJ et al (2006) Structure of the subunit binding domain and dynamics of the di-domain region from the core of human branched chain α-ketoacid dehydrogenase complex. J Biol Chem 281:28345–28353

    Article  PubMed  CAS  Google Scholar 

  • Chevalier S, Marliss EB, Morais JA et al (2005) 9 Whole-body protein anabolic response is resistant to the action of insulin in obese women. Am J Clin Nutr 82:355–365

    PubMed  CAS  Google Scholar 

  • Chevalier S, Burgess SC, Malloy CR et al (2006) The greater contribution of gluconeogenesis to glucose production in obesity is related to increased whole-body protein catabolism. Diabetes 55:675–681

    Article  PubMed  CAS  Google Scholar 

  • Darmaun D, Déchelotte P (1991) Role of leucine as a precursor of glutamine alpha-amino nitrogen in vivo in humans. Am J Physiol 260(2 Pt 1):E326–E329

    PubMed  CAS  Google Scholar 

  • Deferrari G, Garibotto G, Robaudo C et al (1981) Brain metabolism of amino acids and ammonia in patients with chronic renal insufficiency. Kidney Int 20:505–510

    Article  PubMed  CAS  Google Scholar 

  • Deferrari G, Garibotto G, Robaudo C et al (1985) Leg metabolism of amino acids and ammonia in patients with chronic renal failure. Clin Sci (Lond) 69:143–151

    CAS  Google Scholar 

  • DeFronzo RA, Beckles AD (1979) Glucose intolerance following chronic metabolic acidosis in man. Am J Physiol 236:E328–334

    PubMed  CAS  Google Scholar 

  • DeFronzo RA, Felig P (1980) Amino acid metabolism in uremia: insights gained from normal and diabetic man. Am J Clin Nutr 33:1378–1386

    PubMed  CAS  Google Scholar 

  • DeFronzo RA, Alvestrand A, Smith D et al (1981) Insulin resistance in uremia. J Clin Invest 67:563–568

    Article  PubMed  CAS  Google Scholar 

  • Dickinson JM, Rasmussen BB (2010) Essential amino acid sensing, signaling, and transport in the regulation of human muscle protein metabolism. Curr Opin Clin Nutr Metab Care 14:83–88

    Article  Google Scholar 

  • Elia M, Livesey G (1983) Effects of ingested steak and infused leucine on forelimb metabolism in man and the fate of the carbon skeletons and amino groups of branched-chain amino acids. Clin Sci (Lond) 64:517–526

    CAS  Google Scholar 

  • Felig P (1975) Amino acid metabolism in man. Annu Rev Biochem 44:933–955

    Article  PubMed  CAS  Google Scholar 

  • Felig P, Marliss E, Cahill GF Jr (1969a) Plasma amino acid levels and insulin secretion in obesity. N Engl J Med 281:811–816

    Article  PubMed  CAS  Google Scholar 

  • Felig P, Owen OE, Wahren J et al (1969b) Amino acid metabolism during prolonged starvation. J Clin Invest 48:584–594

    Article  PubMed  CAS  Google Scholar 

  • Felig P, Wahren J, Hendler R et al (1974) Splanchnic glucose and amino acid metabolism in obesity. J Clin Invest 53:582–590

    Article  PubMed  CAS  Google Scholar 

  • Forlani G, Vannini P, Marchesini G et al (1984) Insulin-dependent metabolism of branched-chain amino acids in obesity. Metabolism 33:147–150

    Article  PubMed  CAS  Google Scholar 

  • Fürst P, Alvestrand A, Bergström J (1992) Branched-chain amino acids and branched-chain ketoacids in uremia. Contrib Nephrol 98:44–58

    PubMed  Google Scholar 

  • Garibotto G, Russo R, Sala MR et al (1992) Muscle protein turnover and amino acid metabolism in patients with chronic renal failure. Miner Electrolyte Metab 18(2–5):217–221

    PubMed  CAS  Google Scholar 

  • Garibotto G, Paoletti E, Fiorini F et al (1993a) Peripheral metabolism of branched-chain keto acids in patients with chronic renal failure. Miner Electrolyte Metab 19:25–31

    PubMed  CAS  Google Scholar 

  • Garibotto G, Paoletti E, Fiorini F et al (1993b) Peripheral metabolism of branched-chain keto acids in patients with chronic renal failure. Miner Electrolyte Metab 19:25–31

    PubMed  CAS  Google Scholar 

  • Garibotto G, Russo R, Sofia A et al (1994a) Skeletal muscle protein synthesis and degradation in patients with chronic renal failure. Kidney Int 45:1432–1439

    Article  PubMed  CAS  Google Scholar 

  • Garibotto G, Russo R, Sofia A et al (1994b) Skeletal muscle protein synthesis and degradation in patients with chronic renal failure. Kidney Int 45:1432–1439

    Article  PubMed  CAS  Google Scholar 

  • Garibotto G, Russo R, Sofia A et al (1996) Muscle protein turnover in chronic renal failure patients with metabolic acidosis or normal acid-base balance. Miner Electrolyte Metab 22(1–3):58–61

    PubMed  CAS  Google Scholar 

  • Garibotto G, Tessari P, Robaudo C et al (1997) Leucine metabolism and protein dynamics in the human kidney. Contrib Nephrol 121:143–148

    Article  PubMed  CAS  Google Scholar 

  • Gelfand RA, Glickman MG, Jacob R et al (1986) Removal of infused amino acids by splanchnic and leg tissues in humans. Am J Physiol 250(4 Pt 1):E407–E413

    PubMed  CAS  Google Scholar 

  • Goto M, Shinno H, Ichihara A (1977) Isozyme patterns of branched-chain amino acid transaminase in human tissues and tumors. Gann 68:663–667

    PubMed  CAS  Google Scholar 

  • Graham KA, Reaich D, Channon SM et al (1997) Correction of acidosis in hemodialysis decreases whole-body protein degradation. J Am Soc Nephrol 8:632–637

    PubMed  CAS  Google Scholar 

  • Hagenfeldt L, Eriksson S, Wahren J (1980) Influence of leucine on arterial concentrations and regional exchange of amino acids in healthy subjects. Clin Sci (Lond) 59:173–181

    CAS  Google Scholar 

  • Hagenfeldt L, Eriksson LS, Wahren J (1983) Amino acids in liver disease. Proc Nutr Soc 42:497–506

    Article  PubMed  CAS  Google Scholar 

  • Haymond MW, Miles JM (1982) Branched chain amino acids as a major source of alanine nitrogen in man. Diabetes 31:86–89

    Article  PubMed  CAS  Google Scholar 

  • Howarth KR, Burgomaster KA, Phillips SM et al (2007) Exercise training increases branched-chain oxoacid dehydrogenase kinase content in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 293:R1335–R1341

    Article  PubMed  CAS  Google Scholar 

  • Huffman KM, Shah SH, Stevens RD et al (2009) Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care 32:1678–1683

    Article  PubMed  CAS  Google Scholar 

  • Jones MR, Kopple JD (1978) Valine metabolism in normal and chronically uremic man. Am J Clin Nutr 31:1660–1664

    PubMed  CAS  Google Scholar 

  • Keller U, Turkalj I, Laager R et al (2002) Effects of medium- and long-chain fatty acids on whole body leucine and glucose kinetics in man. Metabolism 51:754–760

    Article  PubMed  CAS  Google Scholar 

  • Kooman JP, Deutz NE, Zijlmans P et al (1997) The influence of bicarbonate supplementation on plasma levels of branched-chain amino acids in haemodialysis patients with metabolic acidosis. Nephrol Dial Transplant 12:2397–2401

    Article  PubMed  CAS  Google Scholar 

  • Löfberg E, Wernerman J, Anderstam B et al (1997) Correction of acidosis in dialysis patients increases branched-chain and total essential amino acid levels in muscle. Clin Nephrol 48:230–237

    PubMed  Google Scholar 

  • Löfberg E, Gutierrez A, Anderstam B et al (2006) Effect of bicarbonate on muscle protein in patients receiving hemodialysis. Am J Kidney Dis 48:419–429

    Article  PubMed  Google Scholar 

  • Louard RJ, Fryburg DA, Gelfand RA et al (1992) Insulin sensitivity of protein and glucose metabolism in human forearm skeletal muscle. J Clin Invest 90:2348–2354

    Article  PubMed  CAS  Google Scholar 

  • Lu G, Sun H, She P et al (2009) Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells. J Clin Invest 119:1678–1687

    Article  PubMed  CAS  Google Scholar 

  • Mak RH (1999) Effect of metabolic acidosis on branched-chain amino acids in uremia. Pediatr Nephrol 13:319–322

    Article  PubMed  CAS  Google Scholar 

  • Małgorzewicz S, Debska-Slizień A, Rutkowski B et al (2008) Serum concentration of amino acids versus nutritional status in hemodialysis patients. J Ren Nutr 18:239–247

    Article  PubMed  Google Scholar 

  • Manders RJ, Koopman R, Sluijsmans WE et al (2006) Co-ingestion of a protein hydrolysate with or without additional leucine effectively reduces postprandial blood glucose excursions in type 2 diabetic men. J Nutr 136:1294–1299

    PubMed  CAS  Google Scholar 

  • Marchesini G, Bianchi G, Zoli M et al (1983a) Plasma amino acid response to protein ingestion in patients with liver cirrhosis. Gastroenterology 85:283–290

    PubMed  CAS  Google Scholar 

  • Marchesini G, Forlani G, Zoli M et al (1983b) Effect of euglycemic insulin infusion on plasma levels of branched-chain amino acids in cirrhosis. Hepatology 3:184–187

    Article  PubMed  CAS  Google Scholar 

  • Marchesini G, Bianchi GP, Vilstrup H et al (1987) Plasma clearances of branched-chain amino acids in control subjects and in patients with cirrhosis. J Hepatol 4:108–117

    Article  PubMed  CAS  Google Scholar 

  • Matthews DE, Bier DM, Rennie MJ et al (1981) Regulation of leucine metabolism in man: a stable isotope study. Science 214:1129–1131

    Article  PubMed  CAS  Google Scholar 

  • Matthews DE, Marano MA, Campbell RG (1993) Splanchnic bed utilization of glutamine and glutamic acid in humans. Am J Physiol 264(6 Pt 1):E848–E854

    PubMed  CAS  Google Scholar 

  • Matthews DE, Harkin R, Battezzati A et al (1999) Splanchnic bed utilization of enteral alpha-ketoisocaproate in humans. Metabolism 48:1555–1563

    Article  PubMed  CAS  Google Scholar 

  • Naylor SL, Shows TB (1980) Branched-chain aminotransferase deficiency in Chinese hamster cells complemented by two independent genes on human chromosomes 12 and 19. Somatic Cell Genet 6:641–652

    Article  PubMed  CAS  Google Scholar 

  • Newgard CB, An J, Bain JR et al (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9:311–326

    Article  PubMed  CAS  Google Scholar 

  • Pacy PJ, Cheng KN, Ford GC et al (1990) Influence of glucagon on protein and leucine metabolism: a study in fasting man with induced insulin resistance. Br J Surg 77:791–794

    Article  PubMed  CAS  Google Scholar 

  • Pietilainen KH, Naukkarinen J, Rissanen A et al (2008) Global transcript profiles of fat in monozygotic twins discordant for BMI: pathways behind acquired obesity. PLoS Med 5:e51

    Article  PubMed  Google Scholar 

  • Plauth M, Egberts EH, Abele R et al (1990) Characteristic pattern of free amino acids in plasma and skeletal muscle in stable hepatic cirrhosis. Hepatogastroenterology 37:135–139

    PubMed  CAS  Google Scholar 

  • Pozefsky T, Felig P, Tobin JD et al (1969) Amino acid balance across tissues of the forearm in postabsorptive man. Effects of insulin at two dose levels. J Clin Invest 48:2273–2282

    Article  PubMed  CAS  Google Scholar 

  • Reaich D, Channon SM, Scrimgeour CM et al (1992) Ammonium chloride-induced acidosis increases protein breakdown and amino acid oxidation in humans. Am J Physiol 263(4 Pt 1):E735–E739

    PubMed  CAS  Google Scholar 

  • Riedel E, Hampl H, Nündel M et al (1992) Essential branched-chain amino acids and alpha-ketoanalogues in haemodialysis patients. Nephrol Dial Transplant 7:117–120

    PubMed  CAS  Google Scholar 

  • Rudolph HJ, Gerbitz KD, Michal G et al (1981) Enzymic determination of branched-chain amino acids. Clin Chem 27:431–433

    PubMed  CAS  Google Scholar 

  • Sasaki M, Sato K, Maruhama Y (1988) Rapid changes in urinary serine and branched-chain amino acid excretion among diabetic patients during insulin treatment. Diabetes Res Clin Pract 5:219–224

    Article  PubMed  CAS  Google Scholar 

  • Schauder P, Schäfer G (1987) Oxidation of leucine in human lymphocytes. Scand J Clin Lab Invest 47:447–453

    Article  PubMed  CAS  Google Scholar 

  • Schauder P, Matthaei D, Henning HV et al (1980) Blood levels of branched-chain amino acids and alpha-ketoacids in uremic patients given keto analogues of essential amino acids. Am J Clin Nutr 33:1660–1666

    PubMed  CAS  Google Scholar 

  • Schauder P, Schröder K, Matthaei D et al (1983) Influence of insulin on blood levels of branched chain keto and amino acids in man. Metabolism 32:323–327

    Article  PubMed  CAS  Google Scholar 

  • Schauder P, Schröder K, Langenbeck U (1984a) Serum branched-chain amino and keto acid response to a protein-rich meal in man. Ann Nutr Metab 28:350–356

    Article  PubMed  CAS  Google Scholar 

  • Schauder P, Schröder K, Herbertz L et al (1984b) Evidence for valine intolerance in patients with cirrhosis. Hepatology 4:667–670

    Article  PubMed  CAS  Google Scholar 

  • Schauder P, Herbertz L, Langenbeck U (1985) Serum branched chain amino and keto acid response to fasting in humans. Metabolism 34:58–61

    Article  PubMed  CAS  Google Scholar 

  • Shaham O, Weil R, Wang TJ et al (2008) Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol Syst Biol 214:1–9

    Google Scholar 

  • She P, Van Horn C, Reid T et al (2007) Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol Endocrinol Metab 293:E1552–E1563

    Article  PubMed  CAS  Google Scholar 

  • Solini A, Bonora E, Bonadonna R et al (1997) Protein metabolism in human obesity: relationship with glucose and lipid metabolism and with visceral adipose tissue. J Clin Endocrinol Metab 82:2552–2558

    Article  PubMed  CAS  Google Scholar 

  • Stanley CA, Lieu YK, Hsu BY et al (1998) Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med 338:1352–1357

    Article  PubMed  CAS  Google Scholar 

  • Straumann E, Keller U, Küry D et al (1992) Effect of acute acidosis and alkalosis on leucine kinetics in man. Clin Physiol 12:39–51

    Article  PubMed  CAS  Google Scholar 

  • Suryawan A, Hawes JW, Harris RA et al (1998) A molecular model of human branched-chain amino acid metabolism. Am J Clin Nutr 68:72–81

    PubMed  CAS  Google Scholar 

  • Szabó A, Kenesei E, Körner A et al (1991) Changes in plasma and urinary amino acid levels during diabetic ketoacidosis in children. Diabetes Res Clin Pract 12:91–97

    Article  PubMed  Google Scholar 

  • Tai ES, Tan ML, Stevens RD et al (2010) Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 53:757–767

    Article  PubMed  CAS  Google Scholar 

  • Tessari P, Nosadini R, Trevisan R et al (1986) Defective suppression by insulin of leucine-carbon appearance and oxidation in type 1, insulin-dependent diabetes mellitus. Evidence for insulin resistance involving glucose and amino acid metabolism. J Clin Invest 77:1797–1804

    Article  PubMed  CAS  Google Scholar 

  • Tessari P, Garibotto G, Inchiostro S et al. (1996) Kidney, splanchnic, and leg protein turnover in humans. Insight from leucine and phenylalanine kinetics. J Clin Invest 15(98):1481–1492

    Google Scholar 

  • Tizianello A, De Ferrari G, Gurreri G et al (1977) Effects of metabolic alkalosis, metabolic acidosis and uraemia on whole-body intracellular pH in man. Clin Sci Mol Med 52:125–135

    PubMed  CAS  Google Scholar 

  • Tizianello A, De Ferrari G, Garibotto G et al (1980) Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J Clin Invest 65:1162–1173

    Article  PubMed  CAS  Google Scholar 

  • Tizianello A, Deferrari G, Garibotto G et al (1982) Renal ammoniagenesis in an early stage of metabolic acidosis in man. J Clin Invest 69:240–250

    Article  PubMed  CAS  Google Scholar 

  • Tizianello A, Deferrari G, Garibotto G et al (1983) Branched-chain amino acid metabolism in chronic renal failure. Kidney Int Suppl 16:S17–S22

    PubMed  CAS  Google Scholar 

  • Trevisan R, Nosadini R, Avogaro A et al (1986) Type I diabetes is characterized by insulin resistance not only with regard to glucose, but also to lipid and amino acid metabolism. J Clin Endocrinol Metab 62:1155–1162

    Article  PubMed  CAS  Google Scholar 

  • Vannini P, Marchesini G, Forlani G et al (1982) Branched-chain amino acids and alanine as indices of the metabolic control in type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetic patients. Diabetologia 22:217–219

    Article  PubMed  CAS  Google Scholar 

  • Wahren J, Felig P, Cerasi E et al (1972) Splanchnic and peripheral glucose and amino acid metabolism in diabetes mellitus. J Clin Invest 51:1870–1878

    Article  PubMed  CAS  Google Scholar 

  • Wahren J, Felig P, Hagenfeldt L (1976) Effect of protein ingestion on splanchnic and leg metabolism in normal man and in patients with diabetes mellitus. J Clin Invest 57:987–999

    Article  PubMed  CAS  Google Scholar 

  • Walrand S, Short KR, Bigelow ML et al (2008) Functional impact of high protein intake on healthy elderly people. Am J Physiol Endocrinol Metab 295:E921–E928

    Article  PubMed  CAS  Google Scholar 

  • Walser M, Jarskog FL, Hill SB (1989) Branched-chain-ketoacid metabolism in patients with chronic renal failure. Am J Clin Nutr 50:807–813

    PubMed  CAS  Google Scholar 

  • Wang TJ, Larson MG, Vasan RS et al (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17:448–453

    Article  PubMed  Google Scholar 

  • Zimmerman T, Horber F, Rodriguez N et al (1989) Contribution of insulin resistance to catabolic effect of prednisone on leucine metabolism in humans. Diabetes 38:1238–1244

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

There was no financial support for this work.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María M. Adeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adeva, M.M., Calviño, J., Souto, G. et al. Insulin resistance and the metabolism of branched-chain amino acids in humans. Amino Acids 43, 171–181 (2012). https://doi.org/10.1007/s00726-011-1088-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1088-7

Keywords

Navigation