Skip to main content

Advertisement

Log in

Chronic activation of mTOR complex 1 by branched chain amino acids and organ hypertrophy

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The mitochondrial branched chain aminotransferase-deficient mouse model (BCATm KO), which exhibits elevated plasma and tissue branched chain amino acids (BCAAs), was used to study the effect of BCAAs on mammalian target of rapamycin complex 1 (mTORC1) regulation of organ size. BCATm is the first enzyme in the BCAA catabolic pathway. BCATm KO mouse exhibited hypertrophy of heart, kidneys, and spleen. On the other hand, the mass of the gastrocnemius was reduced relative to body mass. Feeding the mice with a diet supplemented with rapamycin prevented the enlargement of the heart and spleen, suggesting that mTORC1 is the mediator of these effects. Consistently, enlargement of these organs was accompanied by the activation of mTORC1 complex as evidenced by enhanced levels of S6 and 4E-BP1 phosphorylation. HSP20, HSP27 and GAPDH were also increased in the heart but not gastrocnemius, consistent with mTORC1 activation. Liver, however, displayed no weight difference between the KO and the wild-type mice despite the highest activation level of mTORC1 complex. These observations suggest that the anabolic effect of mTORC1 activation at the organ level by BCAAs and inhibition by rapamycin are complex phenomenon and tissue-specific. In addition, it suggests that rapamycin can be used to counter hypertrophy of the organs when activation of mTORC1 is the underlying cause.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abhari BA, Davoodi J (2008) A mechanistic insight into SMAC peptide interference with XIAP-Bir2 inhibition of executioner caspases. J Mol Biol 381(3):645–654. doi:10.1016/j.jmb.2008.05.082

    Article  CAS  PubMed  Google Scholar 

  • Ananieva EA, Patel CH, Drake CH, Powell JD, Hutson SM (2014) Cytosolic branched chain aminotransferase (BCATc) regulates mTORC1 signaling and glycolytic metabolism in CD4+ T cells. J Biol Chem 289(27):18793–18804. doi:10.1074/jbc.M114.554113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anthony JC, Anthony TG, Kimball SR, Vary TC, Jefferson LS (2000) Orally administered leucine stimulates protein synthesis in skeletal muscle of postabsorptive rats in association with increase eIF4F formation. J Nutr 130:139–145

    CAS  PubMed  Google Scholar 

  • Anthony TG, Anthony JC, Yoshizawa SR, Kimball SR, Jefferson LS (2001) Oral administration of leucine stimulates ribosomal protein mRNA translation but not global rates of protein synthesis in the liver of rats. J Nutr 131:1171–1176

    CAS  PubMed  Google Scholar 

  • Bixel MG, Hutson SM, Hamprecht B (1997) Cellular distribution of branched-chain amino acid aminotransferase isoenzymes among rat brain glial cells in culture. J Histochem Cytochem 45(5):685–694

    Article  CAS  PubMed  Google Scholar 

  • Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, Gurbuxani S, Arrigo AP, Kroemer G, Solary E, Garrido C (2000) Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2(9):645–652. doi:10.1038/35023595

    Article  CAS  PubMed  Google Scholar 

  • Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95. doi:10.1038/nrc2981

    Article  CAS  PubMed  Google Scholar 

  • Castellano S, Casarosa S, Sweatt AJ, Hutson SM, Bozzi Y (2007) Expression of cytosolic branched chain aminotransferase (BCATc) mRNA in the developing mouse brain. Gene Expr Patterns: GEP 7(4):485–490. doi:10.1016/j.modgep.2006.10.010

    Article  CAS  PubMed  Google Scholar 

  • Cen O, Longnecker R (2011) Rapamycin reverses splenomegaly and inhibits tumor development in a transgenic model of Epstein-Barr virus-related Burkitt’s lymphoma. Mol Cancer Ther 10(4):679–686. doi:10.1158/1535-7163.MCT-10-0833

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chiu MI, Katz H, Berlin V (1994) RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci USA 91(26):12574–12578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choo AY, Blenis J (2009) Not all substrates are treated equally: implications for mTOR, rapamycin-resistance and cancer therapy. Cell Cycle 8(4):567–572

    Article  CAS  PubMed  Google Scholar 

  • Choo AY, Yoon SO, Kim SG, Roux PP, Blenis J (2008) Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci USA 105(45):17414–17419. doi:10.1073/pnas.0809136105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chou SD, Prince T, Gong J, Calderwood SK (2012) mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PLoS One 7(6):e39679. doi:10.1371/journal.pone.0039679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conway ME, Hutson SM (2000) Mammalian branched-chain aminotransferases. Methods Enzymol 324:355–365

    Article  CAS  PubMed  Google Scholar 

  • Dann SG, Selvaraj A, Thomas G (2007) mTOR complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends Mol Med 13:252–259

    Article  CAS  PubMed  Google Scholar 

  • Davoodi J, Drown PM, Bledsoe RK, Wallin R, Reinhart GD, Hutson SM (1998) Overexpression and characterization of the human mitochondrial and cytosolic branched-chain aminotransferases. J Biol Chem 273(9):4982–4989

    Article  CAS  PubMed  Google Scholar 

  • Gao XM, Wong G, Wang B, Kiriazis H, Moore XL, Su YD, Dart A, Du XJ (2006) Inhibition of mTOR reduces chronic pressure-overload cardiac hypertrophy and fibrosis. J Hypertens 24(8):1663–1670. doi:10.1097/01.hjh.0000239304.01496.83

    Article  CAS  PubMed  Google Scholar 

  • Garber AJ, Karl IE, Kipnis DM (1976) Alanine and glutamine synthesis and release from skeletal muscle. II. The precursor role of amino acids in alanine and glutamine synthesis. J Biol Chem 251(3):836–843

    CAS  PubMed  Google Scholar 

  • Ge Y, Chen J (2012) Mammalian target of rapamycin (mTOR) signaling network in skeletal myogenesis. J Biol Chem 287(52):43928–43935. doi:10.1074/jbc.R112.406942

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gera JF, Mellinghoff IK, Shi Y, Rettig MB, Tran C, Hsu JH, Sawyers CL, Lichtenstein AK (2004) AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J Biol Chem 279(4):2737–2746. doi:10.1074/jbc.M309999200

    Article  CAS  PubMed  Google Scholar 

  • Gielchinsky Y, Laufer N, Weitman E, Abramovitch R, Granot Z, Bergman Y, Pikarsky E (2010) Pregnancy restores the regenerative capacity of the aged liver via activation of an mTORC1-controlled hyperplasia/hypertrophy switch. Genes Dev 24(6):543–548. doi:10.1101/gad.563110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gray S, Wang B, Orihuela Y, Hong E-G, Fisch S, Haldar S, Cline GW, Kim JK, Peroni OD, Kahn BB, Jain MK (2007) Regulation of gluconeogenesis by Kruppel-like factor 15. Cell Metab 5:305–312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gulati P, Gaspers LD, Dann SG, Joaquin M, Nobukuni T, Natt F, Kozma SC, Thomas AP, Thomas G (2008) Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34. Cell Metab 7(5):456–465. doi:10.1016/j.cmet.2008.03.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460(7253):392–395. doi:10.1038/nature08221

    PubMed Central  CAS  PubMed  Google Scholar 

  • Haymond MW, Miles JM (1982) Branched chain amino acids as a major source of alanine nitrogen in man. Diabetes 31(1):86–89

    Article  CAS  PubMed  Google Scholar 

  • Howatson G, Hoad M, Goodall S, Tallent J, Bell PG, French DN (2012) Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study. J Int Soc Sports Nutr 9:20. doi:10.1186/1550-2783-9-20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hutson SM, Harper AE (1981) Blood and tissue branched-chain amino and alpha-keto acid concentrations: effect of diet, starvation, and disease. Am J Clin Nutr 34(2):173–183

    CAS  PubMed  Google Scholar 

  • Hutson SM, Cree TC, Harper AE (1978) Regulation of leucine and alpha-ketoisocaproate metabolism in skeletal muscle. J Biol Chem 253(22):8126–8133

    CAS  PubMed  Google Scholar 

  • Hutson SM, Wallin R, Hall TR (1992) Identification of mitochondrial branched chain aminotransferase and its isoforms in rat tissues. J Biol Chem 267(22):15681–15686

    CAS  PubMed  Google Scholar 

  • Hutson SM, Bledsoe RK, Hall TR, Dawson PA (1995) Cloning and expression of the mammalian cytosolic branched chain aminotransferase isoenzyme. J Biol Chem 270(51):30344–30352

    Article  CAS  PubMed  Google Scholar 

  • Hutson SM, Sweatt AJ, Lanoue KF (2005) Branched-chain amino acid metabolism: implications for establishing safe intakes. J Nutr 135(6 Suppl):1557S–1564S

    CAS  PubMed  Google Scholar 

  • Ichihara A, Koyama E (1966) Transaminase of branched chain amino acids. I. Branched chain amino acids-alpha-ketoglutarate transaminase. J Biochem 59(2):160–169

    CAS  PubMed  Google Scholar 

  • Jefferies HB, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G (1997) Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k. EMBO J 16(12):3693–3704. doi:10.1093/emboj/16.12.3693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jewell JL, Russell RC, Guan KL (2013) Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol 14(3):133–139. doi:10.1038/nrm3522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawaguchi T, Shiraishi K, Ito T, Suzuki K, Koreeda C, Ohtake T, Iwasa M, Tokumoto Y, Endo R, Kawamura NH, Shiraki M, Habu D, Tsuruta S, Miwa Y, Kawaguchi A, Kakuma T, Sakai H, Kawada N, Hanai T, Takahashi SI, Kato A, Onji M, Takei Y, Kohgo Y, Seki T, Tamano M, Katayama K, Mine T, Sata M, Moriwaki H, Suzuki K (2013) Branched-chain amino acids prevent hepatocarcinogenesis and prolong survival of patients with cirrhosis. Clin Gastroenterol Hepatol Off Clin Prac J Am Gastroenterol Assoc. doi:10.1016/j.cgh.2013.08.050

    Google Scholar 

  • Kimball SR, Jefferson LS (2006) Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J Nutr 136(1 Suppl):227S–231S

    CAS  PubMed  Google Scholar 

  • Kimball SR, Jefferson LS, Nguyen HV, Suryawan A, Bush JA, Davis TA (2000) Feeding stimulates protein synthesis in muscle and liver of neonatal pigs through an mTOR-dependent process. Am J Physiol Endocrinol Metab 279(5):E1080–E1087

    CAS  PubMed  Google Scholar 

  • Kolwicz SC Jr, Tian R (2011) Glucose metabolism and cardiac hypertrophy. Cardiovasc Res 90(2):194–201. doi:10.1093/cvr/cvr071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee CS, Georgiou DK, Dagnino-Acosta A, Xu J, Ismailov II, Knoblauch M, Monroe TO, Ji R, Hanna AD, Joshi AD, Long C, Oakes J, Tran T, Corona BT, Lorca S, Ingalls CP, Narkar VA, Lanner JT, Bayle JH, Durham WJ, Hamilton SL (2014) Ligands for FKBP12 increase Ca2+ influx and protein synthesis to improve skeletal muscle function. J Biol Chem 289(37):25556–25570. doi:10.1074/jbc.M114.586289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li C, Najafi H, Daikhin Y, Nissim IB, Collins HW, Yudkoff M, Matschinsky FM, Stanley CA (2003) Regulation of leucine-stimulated insulin secretion and glutamine metabolism in isolated rat islets. J Biol Chem 278:2853–2858

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Chang JW, Wang J, Kang SA, Thoreen CC, Markhard A, Hur W, Zhang J, Sim T, Sabatini DM, Gray NS (2010) Discovery of 1-(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benz o[h][1,6]naphthyridin-2(1H)-one as a highly potent, selective mammalian target of rapamycin (mTOR) inhibitor for the treatment of cancer. J Med Chem 53(19):7146–7155. doi:10.1021/jm101144f

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lo YC, Lee CF, Powell JD (2014) Insight into the role of mTOR and metabolism in T cells reveals new potential approaches to preventing graft rejection. Curr Opin Organ Transplant 19(4):363–371. doi:10.1097/MOT.0000000000000098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Longo KA, Charoenthongtrakul S, Giuliana DJ, Govek EK, McDonagh T, Distefano PS, Geddes BJ (2010) The 24-hour respiratory quotient predicts energy intake and changes in body mass. Am J Physiol Regul Integr Comp Physiol 298(3):R747–R754. doi:10.1152/ajpregu.00476.2009

    Article  CAS  PubMed  Google Scholar 

  • Lynch CJ, Hutson SM, Patson BJ, Vaval A, Vary TC (2002) Tissue-specific effects of chronic dietary leucine and norleucine supplementation on protein synthesis in rats. Am J Physiol Endocrinol Metab 283:E824–E835

    Article  CAS  PubMed  Google Scholar 

  • Malaisse WJ, Sener A, Malaisse-Lagae F, Welsh M, Matthews DE, Bier DM, Hellerstrom C (1982) The stimulus-secretion coupling of amino acid-induced insulin release. Metabolic response of pancreatic islets of l-glutamine and l-leucine. J Biol Chem 257(15):8731–8737

    CAS  PubMed  Google Scholar 

  • Martin TD, Chen XW, Kaplan RE, Saltiel AR, Walker CL, Reiner DJ, Der CJ (2014) Ral and Rheb GTPase activating proteins integrate mTOR and GTPase signaling in aging, autophagy, and tumor cell invasion. Mol Cell 53(2):209–220. doi:10.1016/j.molcel.2013.12.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McMullen JR, Sherwood MC, Tarnavski O, Zhang L, Dorfman AL, Shioi T, Izumo S (2004) Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation 109(24):3050–3055. doi:10.1161/01.CIR.0000130641.08705.45

    Article  CAS  PubMed  Google Scholar 

  • Muelly ER, Moore GJ, Bunce SC, Mack J, Bigler DC, Morton DH, Strauss KA (2013) Biochemical correlates of neuropsychiatric illness in maple syrup urine disease. J Clin Invest 123(4):1809–1820. doi:10.1172/JCI67217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Putinski C, Abdul-Ghani M, Stiles R, Brunette S, Dick SA, Fernando P, Megeney LA (2013) Intrinsic-mediated caspase activation is essential for cardiomyocyte hypertrophy. Proc Natl Acad Sci USA 110(43):E4079–E4087. doi:10.1073/pnas.1315587110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reiter AK, Anthony TG, Anthony JC, Jefferson LS, Kimball SR (2004) The mTOR signaling pathway mediates control of ribosomal protein mRNA translation in rat liver. Int J Biochem Cell Biol 36(11):2169–2179

    Article  CAS  PubMed  Google Scholar 

  • Segawa H, Fukasawa Y, Miyamoto K, Takeda E, Endou H, Kanai Y (1999) Identification and functional characterization of a Na+-independent neutral amino acid transporter with broad substrate selectivity. J Biol Chem 274(28):19745–19751

    Article  CAS  PubMed  Google Scholar 

  • She P, Reid TM, Janket M, Bronson SK, Hutson SM, Lynch CJ (2006) Enhanced energy expenditure, insulin sensitivity and resistance to diet induced obesity in mice lacking BCATm. Diabetes 55S:A391

    Google Scholar 

  • She P, Reid TM, Bronson SK, Vary TC, Hajnal A, Lynch CJ, Hutson SM (2007) Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle. Cell Metab 6:181–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shimobayashi M, Hall MN (2014) Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 15(3):155–162. doi:10.1038/nrm3757

    Article  CAS  PubMed  Google Scholar 

  • Sr K, Lm S, Rl H, Ls J (1999) Leucine regulates translation of specific mRNAs in L6 myoblasts through mTOR-mediated changes in availability of eIF4E and phosphorylation of ribosomal protein S6. J Biol Chem 274(17):11647–11652

    Article  Google Scholar 

  • Suryawan A, Hawes JW, Harris RA, Shimomura Y, Jenkins AE, Hutson SM (1998) A molecular model of human branched-chain amino acid metabolism. Am J Clin Nutr 68(1):72–81

    CAS  PubMed  Google Scholar 

  • Takeshita Y, Takamura T, Kita Y, Ando H, Ueda T, Kato K, Misu H, Sunagozaka H, Sakai Y, Yamashita T, Mizukoshi E, Honda M, Kaneko S (2012) Beneficial effect of branched-chain amino acid supplementation on glycemic control in chronic hepatitis C patients with insulin resistance: implications for type 2 diabetes. Metabolism 61(10):1388–1394. doi:10.1016/j.metabol.2012.03.011

    Article  CAS  PubMed  Google Scholar 

  • Thalacker-Mercer AE, Petrella JK, Bamman MM (2009) Does habitual dietary intake influence myofiber hypertrophy in response to resistance training? A cluster analysis. Appl Physiol Nutr Metab 34(4):632–639. doi:10.1139/H09-038

    Article  PubMed Central  PubMed  Google Scholar 

  • Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284(12):8023–8032. doi:10.1074/jbc.M900301200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toko H, Minamino T, Komuro I (2008) Role of heat shock transcriptional factor 1 and heat shock proteins in cardiac hypertrophy. Trends Cardiovasc Med 18(3):88–93. doi:10.1016/j.tcm.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  • Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fumagalli S, Allegrini PR, Kozma SC, Auwerx J, Thomas G (2004) Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431(7005):200–205. doi:10.1038/nature02866

    Article  CAS  PubMed  Google Scholar 

  • Wallin R, Hall TR, Hutson SM (1990) Purification of branched chain aminotransferase from rat heart mitochondria. J Biol Chem 265:6019–6024

    CAS  PubMed  Google Scholar 

  • Wang T, Donahoe PK, Zervos AS (1994) Specific interaction of type I receptors of the TGF-beta family with the immunophilin FKBP-12. Science 265(5172):674–676

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Hu Z, Hu J, Du J, Mitch WE (2006) Insulin resistance accelerates muscle protein degradation: activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology 147(9):4160–4168. doi:10.1210/en.2006-0251

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Knabe DA (1994) Free and protein-bound amino acids in sow’s colostrum and milk. J Nutr 124(3):415–424

    CAS  PubMed  Google Scholar 

  • Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP (2013) mTOR kinase structure, mechanism and regulation. Nature 497(7448):217–223. doi:10.1038/nature12122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yudkoff M, Daikhin Y, Nissim I, Horyn O, Luhovyy B, Lazarow A, Nissim I (2005) Brain amino acid requirements and toxicity: the example of leucine. J Nutr 135(6 Suppl):1531S–1538S

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank M. Jones and A. Addington for their help in breeding mice. This research was supported by DK 34738 from NIH and grant from University of Tehran.

Conflict of interest

There is no conflict of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Davoodi.

Additional information

Handling Editor C.-A.A. Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neishabouri, S.H., Hutson, S.M. & Davoodi, J. Chronic activation of mTOR complex 1 by branched chain amino acids and organ hypertrophy. Amino Acids 47, 1167–1182 (2015). https://doi.org/10.1007/s00726-015-1944-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-1944-y

Keywords

Navigation