Skip to main content
Log in

Reduction of pentavalent antimony by trypanothione and formation of a binary and ternary complex of antimony(III) and trypanothione

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Several pentavalent antimony compounds have been used for the treatment of leishmaniasis for decades. However, the mechanism of these antimony drugs still remains unclear. One of their targets is thought to be trypanothione, a major low molecular mass thiol inside the parasite. We show that pentavalent antimony (SbV) can be rapidly reduced to its trivalent state by trypanothione at mildly acidic conditions and 310 K (k=4.42 M−1 min−1 at pH 6.4), and that SbIII can be bound to trypanothione to form an SbIII-trypanothione complex. NMR data demonstrate that SbIII binds to trypanothione at the two thiolates of the cysteine residues, and that the binding is pH dependent and is strongest at biological pH with a stability constant logK=23.6 at 298 K (0.1 M NaNO3). The addition of low molecular monothiol ligands such as glutathione and cysteine to the SbIII-trypanothione complex results in the formation of a ternary complex. Thiolates from both trypanothione and monothiol bind to the SbIII center. The formation of the ternary complex is important, as the antileishmanial properties of the drugs are probably due to a complex between of SbIII-trypanothione and enzymes. Although thermodynamically stable, the complex is kinetically labile and the free and bound forms of thiolates exchange on the 1H NMR timescale. Such a facile exchange may be crucial for the transport of SbIII within parasites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5A, B.
Fig. 6.

Similar content being viewed by others

Abbreviations

amastigote:

the parasites culture at pH 5.0 and 310 K to resume the intracellular form

BPR:

bromopyrogallol

ESI-MS:

electrospary ionization mass spectrometry

GSH:

glutathione

pH* :

pH meter reading in D2O without correction for isotope effects

promastigote:

the parasites culture at pH 7.4 and 298 K to resume the extracellular stage

T(SH)2 :

reduced form of trypanothione

T(S-S):

oxidized form of trypanothione (disulfide form)

TR:

trypanothione reductase

tart:

tartrate

References

  1. Olliaro PL, Bryceson ADM (1993) Parasitol Today 9:323–328

    Google Scholar 

  2. Berman JD (1997) Clin Infect Dis 24:684–703

    CAS  PubMed  Google Scholar 

  3. Sun H (2002) Metallodrugs. In: Grant DM, Harris RK (eds) Encyclopedia of nuclear magnetic resonance, vol 9: advances in NMR. Wiley, Chichester, pp 413–427

  4. Reglinski J (1998) Environmental and medicinal chemistry of arsenic, antimony and bismuth. In: Norman NC (ed) Chemistry of arsenic, antimony and bismuth. Blackie, London, pp 403–440

  5. Guo Z, Sadler PJ (2000) Adv Inorg Chem 49:183–306

    CAS  Google Scholar 

  6. Shaked-Mishan P, Ulrich N, Ephros M, Zilberstein D (2001) J Biol Chem 276:3971–3976

    Article  CAS  PubMed  Google Scholar 

  7. Zegers I, Martins JC, Willem R, Wyns L, Messens J (2001) Nat Struct Biol 8:843–847

    Article  CAS  PubMed  Google Scholar 

  8. Messens J, Martins JC, Belle KV, Brosens E, Desmyter A, De Gieter M, Wieruszeski J-M, Willem R, Wyns L, Zegers I (2002) Proc Natl Acad Sci USA 99:8506–8511

    Article  CAS  PubMed  Google Scholar 

  9. Martin P, DeMel S, Shi J, Gladysheva T, Gatti DL, Rosen BP, Edwards BFP (2001) Structure 9:1071–1081

    CAS  PubMed  Google Scholar 

  10. Tamás MJ, Wysocki R (2001) Curr Genet 40:2–12

    Article  PubMed  Google Scholar 

  11. Rosen BP (1999) Trends Microbiol 7:207–212

    Article  CAS  PubMed  Google Scholar 

  12. Radabaugh TR, Aposhian HV (2000) Chem Res Toxicol 13:26–30

    Article  CAS  PubMed  Google Scholar 

  13. Radabaugh TR, Sampayo-Reyes A, Zakharyan RA, Aposhian HV (2002) Chem Res Toxicol 15: 692–698

    Article  CAS  PubMed  Google Scholar 

  14. Messens J, Martins JC, Brosens E, Belle KV, Jacobs DM, Willem R, Wyns L (2002) J Biol Inorg Chem 7:146–156

    Article  CAS  PubMed  Google Scholar 

  15. Fairlamb AH, Blackburn P, Ulrich P, Chait BT, Cerami A (1985) Science 227:1485–1487

    CAS  PubMed  Google Scholar 

  16. Fairlamb AH (1988) The role of glutathionylspermidine and trypanothione in regulation of intracellular spermidine levels during growth of Crithidia fasciculata. In: Zappia, V, Pegg, AE (eds) Progress in polyamine research: novel biochemical, pharmacological and clinical aspects. (Advances in experimental medicine and biology, vol 250) Plenum Press, New York, pp 667–674

  17. Fairlamb AH, Cerami A (1992) Ann Rev Microbiol 46:695–729

    Article  CAS  Google Scholar 

  18. Dumas C, Ouellette M, Tovar J, Cunningham ML, Fairlamb AH, Tamar S, Olivier M, Papadopoulou B (1997) EMBO J 16:2590–2598

    CAS  PubMed  Google Scholar 

  19. Tovar J, Cunningham ML, Smith AC, Croft SL, Fairlamb AH (1998) Proc Natl Acad Sci USA 95:5311–5316

    CAS  PubMed  Google Scholar 

  20. Légaré D, Richard D, Mukhopadhyay R, Stierhof Y-D, Rosen BP, Haimeur A, Papadopoulou B, Ouellette M (2001) J Biol Chem 276:26301–26307

    Article  PubMed  Google Scholar 

  21. Mukhopadhyay R, Dey S, Xu N, Gage D, Lightbody J, Ouellette M (1996) Proc Natl Acad Sci USA 93:10383–10387

    Article  CAS  PubMed  Google Scholar 

  22. Augustyns K, Amssoms K, Yamani A, Rajan PK, Haemers A (2001) Curr Pharm Des 7:1117–1141

    CAS  PubMed  Google Scholar 

  23. Scott N, Hatlelid KM, MacKenzie NE, Carter DE (1993) Chem Res Toxicol 6:102–106

    CAS  PubMed  Google Scholar 

  24. Delnomdedieu M, Basti MM, Otvos JD, Thomas DJ (1994) Chem Biol Interact 90:135–155

    Google Scholar 

  25. Frézard F, Demicheli C, Ferreira CS, Costa MAP (2001) Antimicrob Agents Chemother 45:913–916

    Article  PubMed  Google Scholar 

  26. Mukhopadhyay R, Shi J, Rosen BP (2000) J Biol Chem 275:21149–21157

    Article  CAS  PubMed  Google Scholar 

  27. Ellman Gl (1959) Arch Biochem Biophys 82:70–77

    CAS  Google Scholar 

  28. Piotto M, Saudek V, Sklenar V (1992) J Biomol NMR 2:661–666

    PubMed  Google Scholar 

  29. Burns JA, Butler JC, Moran J, Whitesides GM (19914) J Org Chem 56:2648–2650

    CAS  Google Scholar 

  30. Rath S, Jardim WF, Dórea JG (1997) Fresenius' J Anal Chem 358:548–550

    Google Scholar 

  31. Henderson GB, Glushka J, Cowburn D, Cerami A (1990) J Chem Soc Perkin Trans I 911–914

  32. Sun H, Yan S-C, Cheng W-S (2000) Eur J Biochem 267:5450–5457

    Article  CAS  PubMed  Google Scholar 

  33. Gress ME, Jacobson RA (1974) Inorg Chim Acta 8:209–21

    Article  CAS  Google Scholar 

  34. Pettit G, Pettit, LD (1997) IUPAC stability constants database. IUPAC and Academic Software, Otley, UK

  35. Moutiez M, Meziane-Cherif D, Aumercier M, Sergheraert C, Tartar A (1994) Chem Pharm Bull 42:2641–2644

    CAS  Google Scholar 

  36. Gebel T (1997) Chem Biol Interact 107:131–144

    Article  CAS  PubMed  Google Scholar 

  37. Zhou T, Radaev S, Rosen BP, Gatti DL (2000) EMBO J 19:4838–4845

    Article  CAS  PubMed  Google Scholar 

  38. Marchesini N, Docampo R (2002) Mol Biochem Parasitol 119:225–236

    Google Scholar 

  39. Saar Y, Ransford A, Waldman E, Mazareb S, Amin-Spector S, Plumblee J, Turco SJ, Zilberstein D (1998) Mol Biochem Parasitol 95:9–20

    CAS  PubMed  Google Scholar 

  40. Ferreira CS, Martins PS, Demicheli C, Brochu C, Ouellette M, Frézard F (2003) Biometals 16:441–446

    Article  CAS  PubMed  Google Scholar 

  41. Yan S-C, Ding KY, Zhang L, Sun H (2000) Angew Chem Int Ed 39:4260–4262

    Article  CAS  Google Scholar 

  42. Bochmann M, Song X, Hursthouse MB, Karaulov A (1995) J Chem Soc Dalton Trans 1649–1652

  43. Fairlamb AH, Henderson GB, Cerami A (1989) Proc Natl Acad Sci USA 86:2607–2611

    CAS  PubMed  Google Scholar 

  44. Delnomdedieu M, Basti MM, Otvos JD, Thomas DJ (1993) Chem Res Toxicol 6:598–602

    CAS  PubMed  Google Scholar 

  45. Wernimont AK, Huffman DL, Lamb AL, O'Halloran TV, Rosenzweig AC (2000) Nat Struct Biol 7:766–771

    Article  CAS  PubMed  Google Scholar 

  46. Li S, Rosen BP, Borges-Walmsley MI, Walmsley AR (2002) J Biol Chem 277:25992–26002

    Article  CAS  PubMed  Google Scholar 

  47. Demicheli C, Frézard F, Lecouvey M, Garnier-Suillerot A (2002) Biochim Biophys Acta 1570: 192–198

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Grants Council of Hong Kong (HKU7110/02P), the University of Hong Kong (UGC) and Hung Hing Ying Physical Sciences Research Fund, and was also partially supported by an Area of Excellence grant. We are grateful to the University of Hong Kong for a research studentship (to S.Y.), and Profs. A.H. Fairlamb (Dundee, UK) and J.-F. Chiu (HK) for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhe Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, S., Li, F., Ding, K. et al. Reduction of pentavalent antimony by trypanothione and formation of a binary and ternary complex of antimony(III) and trypanothione. J Biol Inorg Chem 8, 689–697 (2003). https://doi.org/10.1007/s00775-003-0468-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-003-0468-1

Keywords

Navigation