Skip to main content
Log in

Chemistry and biology of mammalian metallothioneins

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Metallothioneins (MTs) are a class of ubiquitously occurring low molecular mass, cysteine- and metal-rich proteins containing sulfur-based metal clusters formed with Zn(II), Cd(II), and Cu(I) ions. In mammals, four distinct MT isoforms designated MT-1 through MT-4 exist. The first discovered MT-1/MT-2 are widely expressed isoforms, whose biosynthesis is inducible by a wide range of stimuli, including metals, drugs, and inflammatory mediators. In contrast, MT-3 and MT-4 are noninducible proteins, with their expression primarily confined to the central nervous system and certain squamous epithelia, respectively. MT-1 through MT-3 have been reported to be secreted, suggesting that they may play different biological roles in the intracellular and extracellular space. Recent reports established that these isoforms play an important protective role in brain injury and metal-linked neurodegenerative diseases. In the postgenomic era, it is becoming increasingly clear that MTs fulfill multiple functions, including the involvement in zinc and copper homeostasis, protection against heavy metal toxicity, and oxidative damage. All mammalian MTs are monomeric proteins, containing two metal–thiolate clusters. In this review, after a brief summary of the historical milestones of the MT-1/MT-2 research, the recent advances in the structure, chemistry, and biological function of MT-3 and MT-4 are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Margoshes M, Vallee BL (1957) J Am Chem Soc 79:4813–4814

    CAS  Google Scholar 

  2. Uchida Y, Takio K, Titani K, Ihara Y, Tomonaga M (1991) Neuron 7:337–347

    PubMed  CAS  Google Scholar 

  3. Quaife CJ, Findley SD, Erickson JC, Froelick GJ, Kelly EJ, Zambrowicz BP, Palmiter RD (1994) Biochemistry 33:7250–7259

    PubMed  CAS  Google Scholar 

  4. Miles AT, Hawksworth GM, Beattie JH, Rodilla V (2000) Crit Rev Biochem Mol Biol 35:35–70

    PubMed  CAS  Google Scholar 

  5. Masters BA, Quaife CJ, Erickson JC, Kelly EJ, Froelick GJ, Zambrowicz BP, Brinster RL, Palmiter RD (1994) J Neurosci 14:5844–5857

    PubMed  CAS  Google Scholar 

  6. Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Cell Mol Life Sci 59:627–647

    PubMed  CAS  Google Scholar 

  7. Duncan KER, Stillman MJ (2006) J Inorg Biochem 100:2101–2107

    Google Scholar 

  8. Stillman MJ (1995) Coord Chem Rev 144:461–511

    CAS  Google Scholar 

  9. Hidalgo J, Aschner M, Zatta P, Vašák M (2001) Brain Res Bull 55:133–145

    PubMed  CAS  Google Scholar 

  10. West AK, Hidalgo J, Eddins D, Levin ED, Aschner M (2008) Neurotoxicology 29:489–503

    PubMed  CAS  Google Scholar 

  11. Krezel A, Hao Q, Maret W (2007) Arch Biochem Biophys 463:188–200

    PubMed  CAS  Google Scholar 

  12. Henkel G, Krebs B (2004) Chem Rev 104:801–824

    PubMed  CAS  Google Scholar 

  13. Cherian MG, Jayasurya A, Bay BH (2003) Mutat Res 533:201–209

    PubMed  CAS  Google Scholar 

  14. Theocharis SE, Margeli AP, Klijanienko JT, Kouraklis GP (2004) Histopathology 45:103–118

    PubMed  CAS  Google Scholar 

  15. Vašák M, Hasler DW (2000) Curr Opin Chem Biol 4:177–183

    PubMed  Google Scholar 

  16. Vašák M, Romero-Isart N (2005) In: King RB (ed) Encyclopedia of inorganic chemistry, 2nd edn. Wiley, New York, pp 3208–3221

  17. Vallee BL (1979) Experientia Suppl 34:19–39

    PubMed  CAS  Google Scholar 

  18. Maliuga DP (1941) Dokl Akad Nauk USSR 31(2):145

    Google Scholar 

  19. Kägi JHR, Vallee B (1960) J Biol Chem 235:3460–3465

    PubMed  Google Scholar 

  20. Kojima Y, Berger C, Vallee BL, Kägi JHR (1976) Proc Natl Acad Sci USA 73:3413–3417

    PubMed  CAS  Google Scholar 

  21. Gouy M, Guindon S, Gascuel O (2010) Mol Biol Evol 27:221–224

    PubMed  CAS  Google Scholar 

  22. Piscator M (1964) Nordisk Hygienisk Tidskrift. XLV:76–82

  23. Nordberg M, Kojima Y (1979) In: Kägi JHR, Nordberg M (eds) Metallothionein. Birkhäuser, Basel, pp 41–116

  24. Michalska AE, Choo KHA (1993) Proc Natl Acad Sci USA 90:8088–8092

    PubMed  CAS  Google Scholar 

  25. Masters BA, Kelly EJ, Quaife CJ, Brinster RL, Palmiter RD (1994) Proc Natl Acad Sci USA 91:584–588

    PubMed  CAS  Google Scholar 

  26. Liu Y, Liu J, Iszard MB, Andrews GK, Palmiter RD, Klaassen CD (1995) Toxicol Appl Pharmacol 135:222–228

    PubMed  CAS  Google Scholar 

  27. Durnam DM, Palmiter RD (1987) Experientia Suppl 52:457–463

    PubMed  CAS  Google Scholar 

  28. Palmiter RD (1998) Proc Natl Acad Sci USA 95:8428–8430

    PubMed  CAS  Google Scholar 

  29. Vallee BL (1987) Experientia Suppl 52:5–16

    PubMed  CAS  Google Scholar 

  30. Searle PF, Davison BL, Stuart GW, Wilkie TM, Norstedt G, Palmiter RD (1984) Mol Cell Biol 4:1221–1230

    PubMed  CAS  Google Scholar 

  31. Hamer DH (1986) Annu Rev Biochem 55:913–951

    PubMed  CAS  Google Scholar 

  32. West AK, Stallings R, Hildebrand CE, Chiu R, Karin M, Richards RI (1990) Genomics 8:513–518

    PubMed  CAS  Google Scholar 

  33. Palmiter RD, Findley SD, Whitmore TE, Durnam DM (1992) Proc Natl Acad Sci USA 89:6333–6337

    PubMed  CAS  Google Scholar 

  34. Heuchel R, Radtke F, Georgiev O, Stark G, Aguet M, Schaffner W (1994) EMBO J 13:2870–2875

    PubMed  CAS  Google Scholar 

  35. Chapman GA, Kay J, Kille P (1999) Biochim Biophys Acta 1445:321–329

    PubMed  CAS  Google Scholar 

  36. Udom AO, Brady FO (1980) Biochem J 187:329–335

    PubMed  CAS  Google Scholar 

  37. Zeng J, Heuchel R, Schaffner W, Kägi JH (1991) FEBS Lett 279:310–312

    PubMed  CAS  Google Scholar 

  38. Zeng J, Vallee BL, Kägi JH (1991) Proc Natl Acad Sci USA 88:9984–9988

    PubMed  CAS  Google Scholar 

  39. Thornalley PJ, Vašák M (1985) Biochim Biophys Acta 827:36–44

    PubMed  CAS  Google Scholar 

  40. Sato M, Bremner I (1993) Free Radic Biol Med 14:325–337

    PubMed  CAS  Google Scholar 

  41. Vašák M (1980) J Am Chem Soc 102:3953–3955

    Google Scholar 

  42. Otvos JD, Armitage IM (1980) Proc Natl Acad Sci USA 77:7094–7098

    PubMed  CAS  Google Scholar 

  43. Vašák M, Kägi JH (1981) Proc Natl Acad Sci USA 78:6709–6713

    PubMed  Google Scholar 

  44. Boulanger Y, Armitage IM, Miklossy KA, Winge DR (1982) J Biol Chem 257:13717–13719

    PubMed  CAS  Google Scholar 

  45. Bertini I, Luchinat C, Messori L, Vašák M (1989) J Am Chem Soc 111:7296–7300

    CAS  Google Scholar 

  46. Stillman MJ, Zelazowski AJ (1988) J Biol Chem 263:6128–6133

    PubMed  CAS  Google Scholar 

  47. Good M, Hollenstein R, Sadler PJ, Vašák M (1988) Biochemistry 27:7163–7166

    PubMed  CAS  Google Scholar 

  48. Frey MH, Wagner G, Vašák M, Sorensen OW, Neuhaus D, Wörgötter E, Kägi JHR, Ernst RR, Wüthrich K (1985) J Am Chem Soc 107:6847–6851

    CAS  Google Scholar 

  49. Furey WF, Robbins AH, Clancy LL, Winge DR, Wang BC, Stout CD (1986) Science 231:704–710

    PubMed  CAS  Google Scholar 

  50. Vašák M, Wörgötter E, Wagner G, Kägi JH, Wüthrich K (1987) J Mol Biol 196:711–719

    PubMed  Google Scholar 

  51. Schultze P, Wörgötter E, Braun W, Wagner G, Vašák M, Kägi JH, Wüthrich K (1988) J Mol Biol 203:251–268

    PubMed  CAS  Google Scholar 

  52. Arseniev A, Schultze P, Wörgötter E, Braun W, Wagner G, Vašák M, Kägi JHR, Wüthrich K (1988) J Mol Biol 201:637–657

    PubMed  CAS  Google Scholar 

  53. Messerle BA, Schäffer A, Vašák M, Kägi JH, Wüthrich K (1990) J Mol Biol 214:765–779

    PubMed  CAS  Google Scholar 

  54. Messerle BA, Schäffer A, Vašák M, Kägi JH, Wüthrich K (1992) J Mol Biol 225:433–443

    PubMed  CAS  Google Scholar 

  55. Robbins AH, McRee DE, Williamson M, Collett SA, Xuong NH, Furey WF, Wang BC, Stout CD (1991) J Mol Biol 221:1269–1293

    PubMed  CAS  Google Scholar 

  56. Braun W, Vašák M, Robbins AH, Stout CD, Wagner G, Kägi JH, Wüthrich K (1992) Proc Natl Acad Sci USA 89:10124–10128

    PubMed  CAS  Google Scholar 

  57. Sewell AK, Jensen LT, Erickson JC, Palmiter RD, Winge DR (1995) Biochemistry 34:4740–4747

    PubMed  CAS  Google Scholar 

  58. Palmiter RD (1995) Toxicol Appl Pharmacol 135:139–146

    PubMed  CAS  Google Scholar 

  59. Irie Y, Keung WM (2001) Biochem Biophys Res Commun 282:416–420

    PubMed  CAS  Google Scholar 

  60. Quaife CJ, Kelly EJ, Masters BA, Brinster RL, Palmiter RD (1998) Toxicol Appl Pharmacol 148:148–157

    PubMed  CAS  Google Scholar 

  61. Penkowa M, Tio L, Giralt M, Quintana A, Molinero A, Atrian S, Vašák M, Hidalgo J (2006) J Neurosci Res 83:974–984

    PubMed  CAS  Google Scholar 

  62. Hozumi I, Suzuki JS, Kanazawa H, Hara A, Saio M, Inuzuka T, Miyairi S, Naganuma A, Tohyama C (2008) Neurosci Lett 438:54–58

    PubMed  CAS  Google Scholar 

  63. Yamada M, Hayashi S, Hozumi I, Inuzuka T, Tsuji S, Takahashi H (1996) Brain Res 735:257–264

    PubMed  CAS  Google Scholar 

  64. Uchida Y, Gomi F, Masumizu T, Miura Y (2002) J Biol Chem 277:32353–32359

    PubMed  CAS  Google Scholar 

  65. Lynes MA, Zaffuto K, Unfricht DW, Marusov G, Samson JS, Yin X (2006) Exp Biol Med (Maywood) 231:1548–1554

    Google Scholar 

  66. Chung RS, Penkowa M, Dittmann J, King CE, Bartlett C, Asmussen JW, Hidalgo J, Carrasco J, Leung YK, Walker AK, Fung SJ, Dunlop SA, Fitzgerald M, Beazley LD, Chuah MI, Vickers JC, West AK (2008) J Biol Chem 283:15349–15358

    PubMed  CAS  Google Scholar 

  67. Klassen RB, Crenshaw K, Kozyraki R, Verroust PJ, Tio L, Atrian S, Allen PL, Hammond TG (2004) Am J Physiol Renal Physiol 287:F393–F403

    PubMed  CAS  Google Scholar 

  68. Erickson JC, Hollopeter G, Thomas SA, Froelick GJ, Palmiter RD (1997) J Neurosci 17:1271–1281

    PubMed  CAS  Google Scholar 

  69. Cole TB, Robbins CA, Wenzel HJ, Schwartzkroin PA, Palmiter RD (2000) Epilepsy Res 39:153–169

    PubMed  CAS  Google Scholar 

  70. Aschner M, Cherian MG, Klaassen CD, Palmiter RD, Erickson JC, Bush AI (1997) Toxicol Appl Pharmacol 142:229–242

    PubMed  CAS  Google Scholar 

  71. Knipp M, Meloni G, Roschitzki B, Vašák M (2005) Biochemistry 44:3159–3165

    PubMed  CAS  Google Scholar 

  72. El Ghazi I, Martin BL, Armitage IM (2006) Exp Biol Med (Maywood) 231:1500–1506

    CAS  Google Scholar 

  73. Meloni G, Polanski T, Braun O, Vašák M (2009) Biochemistry 48:5700–5707

    PubMed  CAS  Google Scholar 

  74. Assaf SY, Chung SH (1984) Nature 308:734–736

    PubMed  CAS  Google Scholar 

  75. Palumaa P, Eriste E, Njunkova O, Pokras L, Jornvall H, Sillard R (2002) Biochemistry 41:6158–6163

    PubMed  CAS  Google Scholar 

  76. Kang YJ (1999) Proc Soc Exp Biol Med 222:263–273

    PubMed  CAS  Google Scholar 

  77. Liu J, Liu Y, Hartley D, Klaassen CD, Shehin-Johnson SE, Lucas A, Cohen SD (1999) J Pharmacol Exp Ther 289:580–586

    PubMed  CAS  Google Scholar 

  78. Carrasco J, Penkowa M, Giralt M, Camats J, Molinero A, Campbell IL, Palmiter RD, Hidalgo J (2003) Neurobiol Dis 13:22–36

    PubMed  CAS  Google Scholar 

  79. Chen Y, Irie Y, Keung WM, Maret W (2002) Biochemistry 41:8360–8367

    PubMed  CAS  Google Scholar 

  80. Durand J, Meloni G, Talmard C, Vašák M, Faller P (2010) Metallomics 2:741–744

    PubMed  CAS  Google Scholar 

  81. Lee SJ, Koh JY (2010) Mol Brain 3:30

    PubMed  Google Scholar 

  82. Garrett SH, Sens MA, Shukla D, Nestor S, Somji S, Todd JH, Sens DA (1999) Prostate 41:196–202

    PubMed  CAS  Google Scholar 

  83. Sens MA, Somji S, Garrett SH, Beall CL, Sens DA (2001) Am J Pathol 159:21–26

    PubMed  CAS  Google Scholar 

  84. Tanji K, Irie Y, Uchida Y, Mori F, Satoh K, Mizushima Y, Wakabayashi K (2003) Brain Res 976:125–129

    PubMed  CAS  Google Scholar 

  85. Dutta R, Sens DA, Somji S, Sens MA, Garrett SH (2002) Prostate 52:89–97

    PubMed  CAS  Google Scholar 

  86. Karotki AV, Vašák M (2009) J Biol Inorg Chem 14:1129–1138

    PubMed  CAS  Google Scholar 

  87. Bogumil R, Faller P, Binz PA, Vašák M, Charnock JM, Garner CD (1998) Eur J Biochem 255:172–177

    PubMed  CAS  Google Scholar 

  88. Faller P, Vašák M (1997) Biochemistry 36:13341–13348

    PubMed  CAS  Google Scholar 

  89. Hasler DW, Faller P, Vašák M (1998) Biochemistry 37:14966–14973

    PubMed  CAS  Google Scholar 

  90. Faller P, Hasler DW, Zerbe O, Klauser S, Winge DR, Vašák M (1999) Biochemistry 38:10158–10167

    PubMed  CAS  Google Scholar 

  91. Hagen KS, Stephan DW, Holm RH (1982) Inorg Chem 21:3928–3936

    CAS  Google Scholar 

  92. Öz G, Zangger K, Armitage IM (2001) Biochemistry 40:11433–11441

    PubMed  Google Scholar 

  93. Wang H, Zhang Q, Cai B, Li H, Sze KH, Huang ZX, Wu HM, Sun H (2006) FEBS Lett 580:795–800

    PubMed  CAS  Google Scholar 

  94. Hasler DW, Jensen LT, Zerbe O, Winge DR, Vašák M (2000) Biochemistry 39:14567–14575

    PubMed  CAS  Google Scholar 

  95. Ni FY, Cai B, Ding ZC, Zheng F, Zhang MJ, Wu HM, Sun HZ, Huang ZX (2007) Proteins 68:255–266

    PubMed  CAS  Google Scholar 

  96. Romero-Isart N, Oliva B, Vašák M (2010) J Mol Model 16:387–394

    PubMed  CAS  Google Scholar 

  97. Romero-Isart N, Jensen LT, Zerbe O, Winge DR, Vašák M (2002) J Biol Chem 277:37023–37028

    PubMed  CAS  Google Scholar 

  98. Ding ZC, Ni FY, Huang ZX (2010) FEBS J 277:2912–2920

    PubMed  CAS  Google Scholar 

  99. Bruinink A, Faller P, Sidler C, Bogumil R, Vašák M (1998) Chem Biol Interact 115:167–174

    PubMed  CAS  Google Scholar 

  100. Erickson JC, Sewell AK, Jensen LT, Winge DR, Palmiter RD (1994) Brain Res 649:297–304

    PubMed  CAS  Google Scholar 

  101. Vašák M, Meloni G (2009) In: Sigel A, Sigel H, Sigel RKO (eds) Metallothioneins and related chelators. Royal Society of Chemistry, Cambridge, pp 319–351

  102. Faller P (2010) FEBS J 277:2921–2930

    PubMed  CAS  Google Scholar 

  103. Roschitzki B, Vašák M (2002) J Biol Inorg Chem 7:611–616

    PubMed  CAS  Google Scholar 

  104. Jensen LT, Peltier JM, Winge DR (1998) J Biol Inorg Chem 3:627–631

    CAS  Google Scholar 

  105. Pountney DL, Schauwecker I, Zarn J, Vašák M (1994) Biochemistry 33:9699–9705

    PubMed  CAS  Google Scholar 

  106. Roschitzki B, Vašák M (2003) Biochemistry 42:9822–9828

    PubMed  CAS  Google Scholar 

  107. Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Chem Rev 106:1995–2044

    PubMed  CAS  Google Scholar 

  108. Barnham KJ, Masters CL, Bush AI (2004) Nat Rev Drug Discov 3:205–214

    PubMed  CAS  Google Scholar 

  109. Sogawa CA, Asanuma M, Sogawa N, Miyazaki I, Nakanishi T, Furuta H, Ogawa N (2001) Acta Med Okayama 55:1–9

    PubMed  CAS  Google Scholar 

  110. Kawashima T, Doh-ura K, Torisu M, Uchida Y, Furuta A, Iwaki T (2000) Dement Geriatr Cogn Disord 11:251–262

    PubMed  CAS  Google Scholar 

  111. Hozumi I, Asanuma M, Yamada M, Uchida Y (2004) J Health Sci 50:323–331

    CAS  Google Scholar 

  112. Barnham KJ, Cappai R, Beyreuther K, Masters CL, Hill AF (2006) Trends Biochem Sci 31:465–472

    PubMed  CAS  Google Scholar 

  113. Halliwell B, Gutteridge JM (1984) Biochem J 219:1–14

    PubMed  CAS  Google Scholar 

  114. Meloni G, Faller P, Vašák M (2007) J Biol Chem 282:16068–16078

    PubMed  CAS  Google Scholar 

  115. Meloni G, Sonois V, Delaine T, Guilloreau L, Gillet A, Teissie J, Faller P, Vašák M (2008) Nat Chem Biol 4:366–372

    PubMed  CAS  Google Scholar 

  116. Chung RS, Howells C, Eaton ED, Shabala L, Zovo K, Palumaa P, Sillard R, Woodhouse A, Bennett WR, Ray S, Vickers JC, West AK (2010) PLoS One 5:e12030

    PubMed  Google Scholar 

  117. Adlard PA, West AK, Vickers JC (1998) Neurobiol Dis 5:349–356

    PubMed  CAS  Google Scholar 

  118. Richarz AN, Bratter P (2002) Anal Bioanal Chem 372:412–417

    PubMed  CAS  Google Scholar 

  119. Zambenedetti P, Giordano R, Zatta P (1998) J Chem Neuroanat 15:21–26

    PubMed  CAS  Google Scholar 

  120. Carrasco J, Adlard P, Cotman C, Quintana A, Penkowa M, Xu F, Van Nostrand WE, Hidalgo J (2006) Neuroscience 143:911–922

    PubMed  CAS  Google Scholar 

  121. Adlard PA, Bush AI (2006) J Alzheimers Dis 10:145–163

    PubMed  Google Scholar 

  122. Dawson TM, Dawson VL (2003) Science 302:819–822

    PubMed  CAS  Google Scholar 

  123. Paik SR, Shin HJ, Lee JH (2000) Arch Biochem Biophys 378:269–277

    PubMed  CAS  Google Scholar 

  124. Binolfi A, Lamberto GR, Duran R, Quintanar L, Bertoncini CW, Souza JM, Cervenansky C, Zweckstetter M, Griesinger C, Fernandez CO (2008) J Am Chem Soc 130:11801–11812

    PubMed  CAS  Google Scholar 

  125. Drew SC, Leong SL, Pham CL, Tew DJ, Masters CL, Miles LA, Cappai R, Barnham KJ (2008) J Am Chem Soc 130:7766–7773

    PubMed  Google Scholar 

  126. Aguzzi A, Heikenwalder M (2006) Nat Rev Microbiol 4:765–775

    PubMed  CAS  Google Scholar 

  127. Prusiner SB (1991) Science 252:1515–1522

    PubMed  CAS  Google Scholar 

  128. Meloni G, Vašák M (2011) Free Radic Biol Med 50:1471–1479

    PubMed  CAS  Google Scholar 

  129. Liang L, Fu K, Lee DK, Sobieski RJ, Dalton T, Andrews GK (1996) Mol Reprod Dev 43:25–37

    PubMed  CAS  Google Scholar 

  130. Schlake T, Boehm T (2001) Mech Dev 109:419–422

    PubMed  CAS  Google Scholar 

  131. Meloni G, Zovo K, Kazantseva J, Palumaa P, Vašák M (2006) J Biol Chem 281:14588–14595

    PubMed  CAS  Google Scholar 

  132. Cai B, Zheng Q, Huang ZX (2005) Protein J 24:327–336

    PubMed  CAS  Google Scholar 

  133. Tio L, Villarreal L, Atrian S, Capdevila M (2004) J Biol Chem 279:24403–24413

    PubMed  CAS  Google Scholar 

  134. Capdevila M, Domenech J, Pagani A, Tio L, Villarreal L, Atrian S (2005) Angew Chem Int Ed 44:4618–4622

    CAS  Google Scholar 

  135. Tio L, Villarreal L, Atrian S, Capdevila M (2006) Exp Biol Med (Maywood) 231:1522–1527

    CAS  Google Scholar 

  136. Prange A, Profrock D (2005) Anal Bioanal Chem 383:372–389

    PubMed  CAS  Google Scholar 

  137. Mounicou S, Ouerdane L, L’Azou B, Passagne I, Ohayon-Courtes C, Szpunar J, Lobinski R (2010) Anal Chem 82:6947–6957

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Parts of the work described in this review have been funded over the years by the Swiss National Science Foundation (M.V.). G.M. is a Marie Curie International Outgoing Fellow (European Commission, grant no. 252961).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Vašák.

Additional information

This article is part of a JBIC special issue on metallothioneins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vašák, M., Meloni, G. Chemistry and biology of mammalian metallothioneins. J Biol Inorg Chem 16, 1067–1078 (2011). https://doi.org/10.1007/s00775-011-0799-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0799-2

Keywords

Navigation