Skip to main content
Erschienen in: Clinical Oral Investigations 2/2012

01.04.2012 | Original Article

Fracture toughness of dental restorative materials

verfasst von: Nicoleta Ilie, Reinhard Hickel, Anca Silvia Valceanu, Karin Christine Huth

Erschienen in: Clinical Oral Investigations | Ausgabe 2/2012

Einloggen, um Zugang zu erhalten

Abstract

The ability of a restorative material to withstand fracture is of crucial importance especially in stress-bearing area. Therefore, the study aims to analyse the fracture toughness of a large number of dental restorative materials categories. The fracture toughness (K IC ) of 69 restorative materials belonging to ten materials categories—micro-hybrid, nanofilled, microfilled, packable, ormocer-based, and flowable resin-based composites (RBC), compomers and flowable compomers, as well as glass ionomer cements (GIC) and resin-modified GIC was measured by means of the single-edge notched-beam method after storing the samples (n = 8) for 24 h in distilled water. Data were analyzed with the one-way analysis of variance (ANOVA) followed by the Tukey’s test and partial eta-squared statistics (p < 0.05). Large variations between the tested materials within a material category were found. The lowest fracture toughness was reached in the GIC group, followed by the microfilled RBCs, resin-modified GIC, and flowable compomers, which do not differ significantly among each other as a material group. The ormocer-based, packable, and micro-hybrid RBCs performed statistically similar, reaching the highest fracture toughness values. Between the two categories of flowables—composites and compomers—no differences were measured. The correlation between K IC and filler volume (0.34) and respective filler weight (0.40) was low. K IC increased with the volume fraction of fillers until a critical value of 57%, following with a plateau, with constant values until ca. 65% volume fraction. Above this value, K IC decreased slightly. Due to the very large variability of the fracture toughness within a material type, the selection of a suitable restorative material should have not been done with respect to a specific material category, especially in stress-bearing areas, but by considering the individual measured material properties.
Literatur
1.
Zurück zum Zitat Sarrett DC (2005) Clinical challenges and the relevance of materials testing for posterior composite restorations. Dent Mater 21:9–20PubMedCrossRef Sarrett DC (2005) Clinical challenges and the relevance of materials testing for posterior composite restorations. Dent Mater 21:9–20PubMedCrossRef
2.
Zurück zum Zitat Brunthaler A, Konig F, Lucas T, Sperr W, Schedle A (2003) Longevity of direct resin composite restorations in posterior teeth. Clin Oral Investig 7:63–70PubMedCrossRef Brunthaler A, Konig F, Lucas T, Sperr W, Schedle A (2003) Longevity of direct resin composite restorations in posterior teeth. Clin Oral Investig 7:63–70PubMedCrossRef
3.
Zurück zum Zitat van Dijken JW (2000) Direct resin composite inlays/onlays: an 11 year follow-up. J Dent 28:299–306PubMedCrossRef van Dijken JW (2000) Direct resin composite inlays/onlays: an 11 year follow-up. J Dent 28:299–306PubMedCrossRef
4.
Zurück zum Zitat Van Nieuwenhuysen JP, D'Hoore W, Carvalho J, Qvist V (2003) Long-term evaluation of extensive restorations in permanent teeth. J Dent 31:395–405PubMedCrossRef Van Nieuwenhuysen JP, D'Hoore W, Carvalho J, Qvist V (2003) Long-term evaluation of extensive restorations in permanent teeth. J Dent 31:395–405PubMedCrossRef
5.
Zurück zum Zitat Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond 221:163–198CrossRef Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond 221:163–198CrossRef
6.
Zurück zum Zitat Irwin G (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24:361–364 Irwin G (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24:361–364
7.
Zurück zum Zitat Schneider SJ (1991) Engineered materials handbook. ASM International, USA Schneider SJ (1991) Engineered materials handbook. ASM International, USA
8.
Zurück zum Zitat Fujishima A, Ferracane JL (1996) Comparison of four modes of fracture toughness testing for dental composites. Dent Mater 12:38–43PubMedCrossRef Fujishima A, Ferracane JL (1996) Comparison of four modes of fracture toughness testing for dental composites. Dent Mater 12:38–43PubMedCrossRef
9.
Zurück zum Zitat Kovarik RE, Fairhurst CW (1993) Effect of Griffith precracks on measurement of composite fracture toughness. Dent Mater 9:222–228PubMedCrossRef Kovarik RE, Fairhurst CW (1993) Effect of Griffith precracks on measurement of composite fracture toughness. Dent Mater 9:222–228PubMedCrossRef
10.
Zurück zum Zitat Quinn JB, Quinn GD (2010) Material properties and fractography of an indirect dental resin composite. Dent Mater 26:589–599PubMedCrossRef Quinn JB, Quinn GD (2010) Material properties and fractography of an indirect dental resin composite. Dent Mater 26:589–599PubMedCrossRef
11.
12.
Zurück zum Zitat Ilie N, Hickel R (2009) Investigations on mechanical behaviour of dental composites. Clin Oral Investig 13:427–438PubMedCrossRef Ilie N, Hickel R (2009) Investigations on mechanical behaviour of dental composites. Clin Oral Investig 13:427–438PubMedCrossRef
13.
Zurück zum Zitat ASTM-Standard-E399-83 (1989) Standard Test Method for Plane Strain Fracture Toughness of Metallic Materials American Society for Testing and Materials Annual Book of ASTM Standards, Philadelphia, PA ASTM-Standard-E399-83 (1989) Standard Test Method for Plane Strain Fracture Toughness of Metallic Materials American Society for Testing and Materials Annual Book of ASTM Standards, Philadelphia, PA
14.
Zurück zum Zitat Quinn GD (1992) Room-temperature flexure fixture for advanced ceramics. NISTIR 4877 National Institute of Standards and Technology, Gaithersburg, MD Quinn GD (1992) Room-temperature flexure fixture for advanced ceramics. NISTIR 4877 National Institute of Standards and Technology, Gaithersburg, MD
15.
Zurück zum Zitat Srawley JE, Brown WF (1964) Fracture toughness testing methods. Fracture Toughness Testing and Its Applications ASTM Special Publ:133–196 Srawley JE, Brown WF (1964) Fracture toughness testing methods. Fracture Toughness Testing and Its Applications ASTM Special Publ:133–196
16.
Zurück zum Zitat De Groot R, Van Elst HC, Peters MCRB (1988) Fracture mechanics parameters for failure prediction of composite resins. J Dent Res 67:919–924PubMedCrossRef De Groot R, Van Elst HC, Peters MCRB (1988) Fracture mechanics parameters for failure prediction of composite resins. J Dent Res 67:919–924PubMedCrossRef
17.
Zurück zum Zitat Ferracane JL, Antonio RC, Matsumoto H (1987) Variables affecting the fracture toughness of dental composites. J Dent Res 66:1140–1145PubMedCrossRef Ferracane JL, Antonio RC, Matsumoto H (1987) Variables affecting the fracture toughness of dental composites. J Dent Res 66:1140–1145PubMedCrossRef
18.
Zurück zum Zitat Yap AU, Chung SM, Chow WS, Tsai KT, Lim CT (2004) Fracture resistance of compomer and composite restoratives. Oper Dent 29:29–34PubMed Yap AU, Chung SM, Chow WS, Tsai KT, Lim CT (2004) Fracture resistance of compomer and composite restoratives. Oper Dent 29:29–34PubMed
19.
Zurück zum Zitat Kim KH, Park JH, Imai Y, Kishi T (1994) Microfracture mechanisms of dental resin composites containing spherically-shaped filler particles. J Dent Res 73:499–504PubMed Kim KH, Park JH, Imai Y, Kishi T (1994) Microfracture mechanisms of dental resin composites containing spherically-shaped filler particles. J Dent Res 73:499–504PubMed
20.
Zurück zum Zitat Wagner D, Vaia R (2004) Nanocomposites: issues at the interface. Materials Today 7(11):38–42CrossRef Wagner D, Vaia R (2004) Nanocomposites: issues at the interface. Materials Today 7(11):38–42CrossRef
21.
Zurück zum Zitat Ilie N, Hickel R, Watts DC (2009) Spatial and cure-time distribution of dynamic-mechanical properties of a dimethacrylate nano-composite. Dent Mater 25:411–418PubMedCrossRef Ilie N, Hickel R, Watts DC (2009) Spatial and cure-time distribution of dynamic-mechanical properties of a dimethacrylate nano-composite. Dent Mater 25:411–418PubMedCrossRef
22.
Zurück zum Zitat Ilie N, Hickel R (2009) Macro-, micro- and nano-mechanical investigations on silorane and methacrylate-based composites. Dent Mater 25:810–819PubMedCrossRef Ilie N, Hickel R (2009) Macro-, micro- and nano-mechanical investigations on silorane and methacrylate-based composites. Dent Mater 25:810–819PubMedCrossRef
23.
Zurück zum Zitat Lin L, Drummond JL (2010) Cyclic loading of notched dental composite specimens. Dent Mater 26:207–214PubMedCrossRef Lin L, Drummond JL (2010) Cyclic loading of notched dental composite specimens. Dent Mater 26:207–214PubMedCrossRef
24.
Zurück zum Zitat Curtis AR, Palin WM, Fleming GJ, Shortall AC, Marquis PM (2009) The mechanical properties of nanofilled resin-based composites: characterizing discrete filler particles and agglomerates using a micromanipulation technique. Dent Mater 25:180–187PubMedCrossRef Curtis AR, Palin WM, Fleming GJ, Shortall AC, Marquis PM (2009) The mechanical properties of nanofilled resin-based composites: characterizing discrete filler particles and agglomerates using a micromanipulation technique. Dent Mater 25:180–187PubMedCrossRef
25.
Zurück zum Zitat Curtis AR, Palin WM, Fleming GJ, Shortall AC, Marquis PM (2009) The mechanical properties of nanofilled resin-based composites: the impact of dry and wet cyclic pre-loading on bi-axial flexure strength. Dent Mater 25:188–197PubMedCrossRef Curtis AR, Palin WM, Fleming GJ, Shortall AC, Marquis PM (2009) The mechanical properties of nanofilled resin-based composites: the impact of dry and wet cyclic pre-loading on bi-axial flexure strength. Dent Mater 25:188–197PubMedCrossRef
26.
Zurück zum Zitat Ferracane JL, Berge HX (1995) Fracture toughness of experimental dental composites aged in ethanol. J Dent Res 74:1418–1423PubMedCrossRef Ferracane JL, Berge HX (1995) Fracture toughness of experimental dental composites aged in ethanol. J Dent Res 74:1418–1423PubMedCrossRef
27.
Zurück zum Zitat Glasspoole EA, Erickson RL, Davidson CL (2002) Effect of surface treatments on the bond strength of glass ionomers to enamel. Dent Mater 18:454–462PubMedCrossRef Glasspoole EA, Erickson RL, Davidson CL (2002) Effect of surface treatments on the bond strength of glass ionomers to enamel. Dent Mater 18:454–462PubMedCrossRef
28.
Zurück zum Zitat Mount GJ (1994) Buonocore memorial lecture. Glass-ionomer cements: past, present and future. Oper Dent 19:82–90PubMed Mount GJ (1994) Buonocore memorial lecture. Glass-ionomer cements: past, present and future. Oper Dent 19:82–90PubMed
29.
Zurück zum Zitat Naasan MA, Watson TF (1998) Conventional glass ionomers as posterior restorations. A status report for the American Journal of Dentistry. Am J Dent 11:36–45PubMed Naasan MA, Watson TF (1998) Conventional glass ionomers as posterior restorations. A status report for the American Journal of Dentistry. Am J Dent 11:36–45PubMed
30.
Zurück zum Zitat Burgess J, Norling B, Summitt J (1994) Resin ionomer restorative materials: the new generation. J Esthet Dent 6:207–215PubMedCrossRef Burgess J, Norling B, Summitt J (1994) Resin ionomer restorative materials: the new generation. J Esthet Dent 6:207–215PubMedCrossRef
31.
Zurück zum Zitat Sidhu SK, Watson TF (1995) Resin-modified glass ionomer materials. A status report for the American Journal of Dentistry. Am J Dent 8:59–67PubMed Sidhu SK, Watson TF (1995) Resin-modified glass ionomer materials. A status report for the American Journal of Dentistry. Am J Dent 8:59–67PubMed
32.
Zurück zum Zitat Janda R, Roulet JF, Latta M, Ruttermann S (2006) The effects of thermocycling on the flexural strength and flexural modulus of modern resin-based filling materials. Dent Mater 22:1103–1108PubMedCrossRef Janda R, Roulet JF, Latta M, Ruttermann S (2006) The effects of thermocycling on the flexural strength and flexural modulus of modern resin-based filling materials. Dent Mater 22:1103–1108PubMedCrossRef
33.
Zurück zum Zitat Lohbauer U, von der Horst T, Frankenberger R, Kramer N, Petschelt A (2003) Flexural fatigue behavior of resin composite dental restoratives. Dent Mater 19:435–440PubMedCrossRef Lohbauer U, von der Horst T, Frankenberger R, Kramer N, Petschelt A (2003) Flexural fatigue behavior of resin composite dental restoratives. Dent Mater 19:435–440PubMedCrossRef
Metadaten
Titel
Fracture toughness of dental restorative materials
verfasst von
Nicoleta Ilie
Reinhard Hickel
Anca Silvia Valceanu
Karin Christine Huth
Publikationsdatum
01.04.2012
Verlag
Springer-Verlag
Erschienen in
Clinical Oral Investigations / Ausgabe 2/2012
Print ISSN: 1432-6981
Elektronische ISSN: 1436-3771
DOI
https://doi.org/10.1007/s00784-011-0525-z

Weitere Artikel der Ausgabe 2/2012

Clinical Oral Investigations 2/2012 Zur Ausgabe

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Zahnmedizin und bleiben Sie gut informiert – ganz bequem per eMail.