Skip to main content

Advertisement

Log in

Micro-CT and FE-SEM enamel analyses of calcium-based agent application after bleaching

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The objective of the present study is to evaluate the effects of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on bleached enamel.

Materials and methods

A bleaching agent (35% hydrogen peroxide) was applied, 4 × 8 min on premolar teeth (n = 8). A CPP-ACP paste was applied for 7 days. Prior and post-treatment, microtomography images were obtained and 3D regions of interest (ROIs) were selected, from outer enamel, extending to 110.2-μm depth. CT parameters of structure: thickness (St.Th), separation (St.Sp), and fragmentation index (Fr.I.) were calculated for each (ROI). Data was submitted to paired t tests at a 95% confidence level. The samples were evaluated at 3000 to 100,000 magnification. Quantitative analysis of enamel mineral content was also determined by SEM EDX.

Results

There was a significant increase in structure thickness and calcium content. The phosphorus content increased after bleaching. There was also a decreased separation and fragmentation index on the outer enamel to a depth of 56.2 μm (p < 0.05). There were no changes at 110.2-μm depth for the bleaching CPP-ACP association. A covering layer and decreased spaces between the hydroxyapatite crystals appeared around the enamel prisms, 7 days after the CPP-ACP application.

Conclusions

The application of a CPP-ACP provides a compact structure on the enamel’s outer surface, for 7 days, due to calcium deposition. CT parameters seem to be a useful tool for mineralizing and remineralizing future studies.

Clinical relevance

CPP-ACP neutralizes any adverse effects on enamel surface when applied during a week after bleaching and minimizes any side effects of the bleaching treatment due to a more compact structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Eimar H, Sicilian R, Abdallah MN, Nader SA et al (2012) Hydrogen peroxide whitens teeth by oxidizing the organic structure. J Dent 40:e25–e33. doi:10.1016/j.jdent.2012.08.008

    Article  PubMed  Google Scholar 

  2. Tanaka R, Shibata Y, Manabe A, Miyazaki T (2010) Micro-structural integrity of dental enamel subjected to two tooth whitening regimes. Arch Oral Biol 55:300–308. doi:10.1016/j.archoralbio.2010.02.009

    Article  PubMed  Google Scholar 

  3. Kugel G, Ferreira S, Sharma S, Barker ML, Gerlach RW (2009) Clinical trial assessing light enhancement of in-office tooth whitening. J Esthet Restor Dent 21:336–347. doi:10.1111/j.1708-8240.2009.00287

    Article  PubMed  Google Scholar 

  4. Featherstone JD, Cutress TW, Rodgers BE, Dennison PJ (1982) Remineralization of artificial caries-like lesions in vivo by a self-administered mouthrinse or paste. Caries Res 16:235–242

    Article  PubMed  Google Scholar 

  5. Vogel GL, Schumacher GE, Chow LC, Takagi S, Carey CM (2008) Ca pre-rinse greatly increases plaque and plaque fluid F. J Dent Res 87:466–469

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lewinstein I, Fuhrer N, Churaru N, Cardash H (2004) Effect of different peroxide bleaching regimens and subsequent fluoridation on the hardness of human enamel and dentin. J Prosthet Dent 92:337–342

    Article  PubMed  Google Scholar 

  7. Giniger M, Macdonald J, Ziemba S, Felix H (2005) The clinical performance of professionally dispensed bleaching gel with added amorphous calcium phosphate. J Am Dent Assoc 136:383–392

    Article  PubMed  Google Scholar 

  8. Mathew M, Takagi S (2001) Structures of biological minerals in dental research. J Res Natl Inst Stand Technol 106:1035–1044

    Article  PubMed  PubMed Central  Google Scholar 

  9. Oshiro M, Yamaguchi K, Takamizawa T, Inage H, Watanabe T, Irokawa A et al (2007) Effect of CPP-ACP paste on tooth mineralization: an FE-SEM study. J Oral Sci 49:115–120

    Article  PubMed  Google Scholar 

  10. Rahiotis C, Vougiouklakis G (2007) Effect of a CPP-ACP agent on the demineralization and remineralization of dentine in vitro. J Dent 35:695–698

    Article  PubMed  Google Scholar 

  11. Wong RH, Palamara JE, Wilson PR, Reynolds EC, Burrow MF (2011) Effect of CPP-ACP addition on physical properties of zinc oxide non-eugenol temporary cements. Dent Mater 27:329–338

    Article  PubMed  Google Scholar 

  12. Singh RD, Ram SM, Shetty O, Chand P, Yadav R (2010) Efficacy of casein phosphopeptide-amorphous calcium phosphate to prevent stain absorption on freshly bleached enamel: an in vitro study. J Conserv Dent 13:76–79. doi:10.4103/0972-0707.66715

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li J, Xie X, Wang Y, Yin W, Antoun JS, Farella M, Mei L (2014) Long-term remineralizing effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on early caries lesions in vivo: a systematic review. J Dent 42:769–777

    Article  PubMed  Google Scholar 

  14. Reynolds E, Cai F, Shen P, Walker G (2003) Retention in plaque and remineralization of enamel lesions by various forms of calcium in a mouthrinse or sugar-free chewing gum. J Dent Res 82:206–211

    Article  PubMed  Google Scholar 

  15. Reynolds E, Cain C, Webber E, Black C, Riley P, Johnson I, Perich J (1995) Anticariogenicity of calcium phosphate complexes of tryptic casein phosphopeptides in the rat. J Dent Res 74:1272–1279

    Article  PubMed  Google Scholar 

  16. Margolis HC, Moreno EC (1990) Physicochemical perspectives on the cariostatic mechanisms of systemic and topical fluorides. J Dent Res 69:606–613

    Article  PubMed  Google Scholar 

  17. Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SL (2008) Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev 108:4754–4783

    Article  PubMed  PubMed Central  Google Scholar 

  18. Robinson C (1995) Dental enamel formation to destruction. CRC Press, Boca Raton

    Google Scholar 

  19. Paine M, White S, Luo W, Fong H, Sarikaya M, Snead M (2001) Regulated gene expression dictates enamel structure and tooth function. Matrix Biol 20:273–292

    Article  PubMed  Google Scholar 

  20. Muller R, Campenhout H, Damme B, Perre G, Dequeker J et al (1998) Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone 23:59–66

    Article  PubMed  Google Scholar 

  21. Elliott J, Davis G, Anderson P, Wong F, Dowker S, Mercer C (1997) Application of laboratory microtomography to the study of mineralised tissues. An Quim Int Ed 93:429–433

    Google Scholar 

  22. Efeoglu N, Wood DJ, Efeoglu C (2007) Thirty-five percent carbamide peroxide application causes in vitro demineralization of enamel. Dent Mater 23:900–904

    Article  PubMed  Google Scholar 

  23. Hahn MVM, Pompesius-Kempa M, Delling G (1992) Trabecular bone pattern factor—a new parameter for simple quantification of bone microarchitecture. Bone 13:327–330

    Article  PubMed  Google Scholar 

  24. Chappard DM-FB, Legrand E, Audran M (2008) Trabecular bone microarchitecture. A review. Morphologie 92:162–170

    Article  PubMed  Google Scholar 

  25. Hildebrand T (1995) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 185:67–75

    Article  Google Scholar 

  26. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ et al (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  PubMed  Google Scholar 

  27. Berkovitz BKG (1989) Handbook of microscopic anatomy (teeth). Springer-Verlag, London

    Google Scholar 

  28. Moreno EC, Zahradnik RT (1973) The pore structure of human dental enamel. Arch Oral Biol 18:1063–1068

    Article  PubMed  Google Scholar 

  29. Basting RT, Rodrigues AL, Serra MC (2003) The effects of seven carbamide peroxide bleaching agents on enamel microhardness over time. J Am Dent Assoc 134:1335–1342

    Article  PubMed  Google Scholar 

  30. Wiegand A, Vollmer D, Foitzik M, Attin R, Attin T (2005) Efficacy of different whitening modalities on bovine enamel and dentin. Clin Oral Investig 9:91–97

    Article  PubMed  Google Scholar 

  31. Attin T, Manolakis A, Buchalla W, Hannig C (2003) Influence of tea on intrinsic colour of previously bleached enamel. J Oral Rehabil 30:488–494

    Article  PubMed  Google Scholar 

  32. Kugel G, Petkevis J, Gurgan S, Doherty E (2007) Separate whitening effects on enamel and dentin after fourteen days. J Endod 33:34–37

    Article  PubMed  Google Scholar 

  33. Spalding M, Taveira LA, de Assis GF (2003) Scanning electron microscopy study of dental enamel surface exposed to 35% hydrogen peroxide: alone, with saliva, and with 10% carbamide peroxide. J Esthet Restor Dent 15:154–164

    Article  PubMed  Google Scholar 

  34. Fejerskov O, Josephsen K, Nyvad B (1984) Surface ultrastructure of unerupted mature human enamel. Caries Res 18:302–314

    Article  PubMed  Google Scholar 

  35. Hegedus C, Bistey T, Flora-Nagy E, Keszthelyi G, Jenei A (1999) An atomic force microscopy study on the effect of bleaching agents on enamel surface. J Dent 27:509–515

    Article  PubMed  Google Scholar 

  36. Jiang T, Ma X, Wang Y, Tong H, Shen X, Hu Y et al (2008) Investigation of the effects of 30% hydrogen peroxide on human tooth enamel by Raman scattering and laser-induced fluorescence. J Biomed Opt 13:014019. doi:10.1117/1.2870114

    Article  PubMed  Google Scholar 

  37. Kwon YH, Huo MS, Kim KH, Kim SK, Kim YJ (2002) Effects of hydrogen peroxide on the light reflectance and morphology of bovine enamel. J Oral Rehabil 29:473–477

    Article  PubMed  Google Scholar 

  38. Ruse ND, Smith DC, Torneck CD, Titley KC (1990) Preliminary surface analysis of etched, bleached, and normal bovine enamel. J Dent Res 69:1610–1613

    Article  PubMed  Google Scholar 

  39. Pinheiro HB, Cardoso PE (2011) Influence of five home whitening gels and a remineralizing gel on the enamel and dentin ultrastructure and hardness. Am J Dent 24:131–137

    PubMed  Google Scholar 

  40. Poggio C, Lombardini M, Dagna A, Chiesa M, Bianchi S (2009) Protective effect on enamel demineralization of a CPP-ACP paste: an AFM in vitro study. J Dent 37:949–954. doi:10.1016/j.jdent.2009.07.011

    Article  PubMed  Google Scholar 

  41. Eisenburger M, Addy M, Hughes JA, Shellis RP (2001) Effect of time on the remineralisation of enamel by synthetic saliva after citric acid erosion. Caries Res 35:211–215

    Article  PubMed  Google Scholar 

  42. Iijima Y, Cai F, Shen P, Walker G, Reynolds C, Reynolds EC (2004) Acid resistance of enamel subsurface lesions remineralized by a sugar-free chewing gum containing casein phosphopeptide-amorphous calcium phosphate. Caries Res 38:551–556

    Article  PubMed  Google Scholar 

  43. Wong FS, Anderson P, Fan H, Davis GR (2004) X-ray microtomographic study of mineral concentration distribution in deciduous enamel. Arch. Oral Biol 49:937–944

    Article  Google Scholar 

  44. Davis GR, Wong FS (1996) X-ray microtomography of bones and teeth. Physiol Meas 17:121–146

    Article  PubMed  Google Scholar 

  45. Damen JJM, Ra E, Ten Cate JM (1997) Reproducibility of TMR for the determination of longitudinal mineral changes in dental hard tissues. Adv Dent Res 11:415–1419

    Article  PubMed  Google Scholar 

  46. Kucuk E, Malcok S, Demir A (2016) Microcomputed tomography evaluation of white spot lesion remineralization with various procedures. Am J Orthod Dentofac Orthop 150:483–490

    Article  Google Scholar 

  47. Efeoglu N, Wood D, Efeoglu C (2005) Microcomputerised tomography evaluation of 10% carbamide peroxide applied to enamel. J Dent 33:561–567

    Article  PubMed  Google Scholar 

  48. Xue J, Li W, Swain MV (2009) In vitro demineralization of human enamel natural and abraded surfaces: a micromechanical and SEM investigation. J Dent 37:264–272

    Article  PubMed  Google Scholar 

  49. Margolis HC, Zhang YP, Lee CY, Kent RL, Moreno EC (1999) Kinetics of enamel demineralization in vitro. J Dent Res 37:1326–1335

    Article  Google Scholar 

  50. Bonse U, Busch F (1996) X-ray computed microtomography using synchroton radiation (SR). Prog Biophys Mol Biol 65:133–169

    Article  PubMed  Google Scholar 

  51. Lowitz T, Museyko O, Bousson V, Kalender WA (2014) Characterization of knee osteoarthritis-related changes in trabecular bone using texture parameters at various levels of spatial resolution—a simulation study. BoneKEy Rep 3:615. doi: 10.1038/bonekey.2014.110

  52. Hsu JT, Wang SP, Huang HL, Chen YJ, Wu J, Tsai MT (2013) The assessment of trabecular bone parameters and cortical bone strength: a comparison of micro-CT and dental cone-beam CT. J Biomech 46:2611–2618. doi:10.1016/j.jbiomech.2013.08.004

    Article  PubMed  Google Scholar 

  53. Poggio C, Grasso N, Ceci M, Beltrami R, Colombo M, Chiesa M (2016) Ultrastructural evaluation of enamel surface morphology after tooth bleaching followed by the application of protective pastes. Scanning 38:221–226. doi:10.1002/sca.21263

    Article  PubMed  Google Scholar 

  54. deVasconcelos AA, Cunha A, Borges C, Vitoriano O et al (2012) Enamel properties after tooth bleaching with hydrogen/carbamide peroxides in association with a CPP-ACP. Acta Odontol Scand 70:337–343. doi:10.3109/00016357.2011.654261

    Article  Google Scholar 

  55. Feldkamp LA, Goldstein A, Parfitt M, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4:3–11

    Article  PubMed  Google Scholar 

  56. Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H et al (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28:2–17. doi:10.1002/jbmr.1805

    Article  PubMed  PubMed Central  Google Scholar 

  57. Li Q, Xu BT, Li R, Yu H, Wang YN (2010) Quantitative evaluation of colour regression and mineral content change of bleached teeth. J Dent 38:253–260. doi:10.1016/j.jdent.2009.11.005

    Article  PubMed  Google Scholar 

  58. Reynolds EC (1997) Remineralization of enamel subsurface lesions by casein phosphopeptide-stabilized calcium phosphate solutions. J Dent Res 76:1587–1595

    Article  PubMed  Google Scholar 

  59. Reynolds EC (1998) Anticariogenic complexes of amorphous calcium phosphate stabilized by casein phosphopeptides: a review. Spec Care Dentist 18:8–16

    Article  PubMed  Google Scholar 

  60. Shen P, Cai F, Nowicki A, Vincent J, Reynolds EC (2001) Remineralization of enamel subsurface lesions by sugar-free chewing gum containing casein phosphopeptide-amorphous calcium phosphate. J Dent Res 80:2066–2070

    Article  PubMed  Google Scholar 

  61. Bader JD (2010) Casein phosphopeptide-amorphous calcium phosphate shows promise for preventing caries. Evid Based Dent 11:11–12

    Article  PubMed  Google Scholar 

  62. Lopatiene K, Borisovaite M, Lapenaite E (2016) Prevention and treatment of white spot lesions during and after treatment with fixed orthodontic appliances: a systematic literature review. J Oral Maxillofac Res 7:e1

    Article  PubMed  PubMed Central  Google Scholar 

  63. Islam A, Alam MK (2016) White spot lesion, the silent factor killing your smile: an overview. Br J Med Med Res 17:1–7

    Article  Google Scholar 

  64. Kecik D (2016) Effectiveness of casein phosphopeptide-amorphous calcium phosphate on the prevention of white spot lesions: a systematic review and meta-analysis. Iran J Orthod In Press e7194

  65. Yengopal V, Mickenautsch S (2009) Caries preventive effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP): a meta-analysis. Acta Odontol Scand 67:321–332. doi:10.1080/00016350903160563

    Article  PubMed  Google Scholar 

  66. Rotstein I, Dankner E, Goldman A, Heling I, Stabholz A, Zalkind M (1996) Histochemical analysis of dental hard tissues following bleaching. J Endod 22:23–25

    Article  PubMed  Google Scholar 

  67. Titley K, Torneck CD, Smith D (1988) The effect of concentrated hydrogen peroxide solutions on the surface morphology of human tooth enamel. J Endod 14:69–74

    Article  PubMed  Google Scholar 

  68. Públio JC, D’Arce MB, Brunharo NM, Ambrosano GM, Aguiar FH, Lovadino JR, Lima DA Influence of surface treatments on enamel susceptibility to staining by cigarette smoke. J Clin Exp Dent 5:163–168. doi:10.4317/jced.51097

Download references

Acknowledgements

This work was supported by the CNPQ-The Brazilian National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico) [#142750/2008-5]. Mr. Phil Salmon, application scientist at Bruker micro-CT, is acknowledged for his technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Neves Gomes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

The work was supported by the CNPQ-The Brazilian National Council for Scientific and Technological Development.

Ethical approval

All procedures performed in studies involving human subjects were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments; it has been approved by the relevant institutional ethical committee.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, M.N., Rodrigues, F.P., Silikas, N. et al. Micro-CT and FE-SEM enamel analyses of calcium-based agent application after bleaching. Clin Oral Invest 22, 961–970 (2018). https://doi.org/10.1007/s00784-017-2175-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-017-2175-2

Keywords

Navigation