Skip to main content
Log in

Dopamine sensor based on molecularly imprinted electrosynthesized polymers

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Molecularly imprinted polymers (MIPs) have been applied as molecular recognition elements to chemical sensors. In this paper, we combined the use of MIPs and electropolymerization to produce a sensor which was capable of detecting dopamine (DA). The MIP electrode was obtained by electrocopolymerization of o-phenylenediamine and resorcinol in the presence of the template molecular DA. The MIP electrode exhibited a much higher current response compared with the non-imprinted electrode. The response of the imprinted sensor to DA was linearly proportional to its concentration over the range 5.0 × 10−7-4.0 × 10−5 M. The detection limit of DA is 0.13 μM (S/N = 3). Moreover, the proposed method could discriminate between DA and its analogs, such as ascorbic acid and uric acid. This method was successfully applied to the determination of DA in dopamine hydrochloride injection and healthy human blood serum. These results revealed that such a sensor fulfilled the selectivity, sensitivity, sped, and simplicity requirements for DA detection and provided possibilities of clinical application in physiological fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Venton BJ, Wightman RM (2003) Anal Chem 75:414a–421a

    Article  CAS  Google Scholar 

  2. Luczak T (2008) Electrochim Acta 53:5725–5731

    Article  CAS  Google Scholar 

  3. Vasantha VS, Chen SM (2006) J Electroanal Chem 592:77–87

    Article  CAS  Google Scholar 

  4. Li QM, Li J, Yang ZJ (2007) Anal Chim Acta 583:147–152

    Article  CAS  Google Scholar 

  5. Muzzi C, Bertocci E, Terzuoli L, Porcelli B, Ciari I, Pagani R, Guerranti R (2008) Biomed Pharmacother 62:253–258

    Article  CAS  Google Scholar 

  6. Heidbreder CA, Lacroix L, Atkins AR, Organ AJ, Murray S, West A, Shah AJ (2001) J Neurosci Methods 112:135–144

    Article  CAS  Google Scholar 

  7. Jo S, Jeong H, Bae SR, Jeon S (2008) Microchem J 88:1–6

    Article  CAS  Google Scholar 

  8. Yan W, Feng XM, Chen XJ, Li XH, Zhu JJ (2008) Bioelectrochemistry 72:21–27

    Article  CAS  Google Scholar 

  9. Jiao SF, Li MG, Wang C, Chen DL, Fang B (2007) Electrochim Acta 52:5939–5944

    Article  CAS  Google Scholar 

  10. Toth B, Pap T, Horvath V, Horvai G (2007) Anal Chim Acta 591:17–21

    Article  CAS  Google Scholar 

  11. Shoji R, Takeuchi T, Kubo I (2003) Anal Chem 75:4882–4886

    Article  CAS  Google Scholar 

  12. Gupta R, Kumar A (2008) Biotechnol Adv 26:533–547

    Article  CAS  Google Scholar 

  13. Holthoff EL, Bright FV (2007) Anal Chim Acta 594:147–161

    Article  CAS  Google Scholar 

  14. Xu XL, Zhou GL, Li HX, Liu Q, Zhang S, Kong JL (2009) Talanta 78:26–32

    Article  CAS  Google Scholar 

  15. Blanco LMC, Lobo CMJ, Miranda OAJ, Tunon BP (2004) Trac Trends Anal Chem 23:36–48

    Article  Google Scholar 

  16. Kindschy LM, Alocilja EC (2005) Biosens Bioelectron 20:2163–2167

    Article  CAS  Google Scholar 

  17. Feng L, Liu Y, Tan Y, Hu J (2004) Biosens Bioelectron 19:1513–1519

    Article  CAS  Google Scholar 

  18. Weetall HH, Rogers KR (2004) Talanta 62:329–335

    Article  CAS  Google Scholar 

  19. Ulyanova YV, Blackwell AE, Minteer SD (2006) Analyst 131:257–261

    Article  CAS  Google Scholar 

  20. Gomez CA, Goicolea MA, Barrio RJ (2005) Analyst 130:1012–1018

    Article  Google Scholar 

  21. Li JP, Zhao J, Wei XP (2009) Sens Actuators B 140:663–669

    Article  Google Scholar 

  22. Rothwell SA, Killoran SJ, Neville EM, Crotty AM, O'Neill RD (2008) Electrochem Commun 10:1078–1081

    Article  CAS  Google Scholar 

  23. Kumar SA, Tang CF, Chen SM (2008) Talanta 76:997–1005

    Article  CAS  Google Scholar 

  24. Lin XQ, Kang GF, Lu LP (2007) Bioelectrochem 70:235–244

    Article  CAS  Google Scholar 

  25. Li NB, Ren W, Luo HQ (2007) Electroanalysis 19:1496–1502

    Article  CAS  Google Scholar 

  26. Hu GZ, Zhang DP, Wu WL, Yang ZS (2008) Colloids Surf B 62:199–205

    Article  CAS  Google Scholar 

  27. Yu C, Mosbach K (1997) J Org Chem 62:4057–4064

    Article  CAS  Google Scholar 

  28. Wang HS, Li TH, Jia WL, Xu HY (2006) Biosens Bioelectron 22:664–669

    Article  Google Scholar 

  29. Chen YY, Lin SY, Yeh YY, Hsiao HH, Wu CY, Chen ST, Wang AHJ (2005) Electrophoresis 26:2117–2127

    Article  CAS  Google Scholar 

  30. Chen JH, Zhang J, Lin XH, Wan HY, Zhang SB (2007) Electroanalysis 19:612–615

    Article  CAS  Google Scholar 

  31. Thiagarajan S, Chen SM (2007) Talanta 74:212–222

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan-Bi Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, W., Chen, Y., Xu, J. et al. Dopamine sensor based on molecularly imprinted electrosynthesized polymers. J Solid State Electrochem 14, 1909–1914 (2010). https://doi.org/10.1007/s10008-010-1025-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1025-9

Keywords

Navigation