Skip to main content

Advertisement

Log in

Brain tumor stem cells as research and treatment targets

  • Review Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

Glioblastoma multiforme (GBM) is one of the most malignant forms of human cancer. Despite intensive treatment, the mean survival of GBM patients remains about 1 year. Recent cancer studies revealed that cancer tissues are pathologically heterogeneous and only a small population of cells has the specific ability to reinitiate cancer. This small cell population is called cancer stem cells (CSCs); in brain tumors these are known as brain tumor stem cells (BTSCs). The identification of BTSCs yielded new insights into chemo-and radioresistance, by which BTSCs can survive selectively and initiate recurrence. Research focused on BTSCs as treatment targets may contribute to the discovery of new therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  PubMed  CAS  Google Scholar 

  2. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al (2003) Prospective isolation of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988

    Article  PubMed  CAS  Google Scholar 

  3. Singh SK, Clarke ID, Terasaki M, et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    PubMed  CAS  Google Scholar 

  4. Reya T, Morison SJ, Clarke MF, et al (2001) Stem cells, cancer, and cancer stem cells. Nature (Lond) 414:105–111

    Article  CAS  Google Scholar 

  5. Singh SK, Howkins C, Clarke ID, et al (2004) Identification of human brain tumour initiating cells. Nature (Lond) 432:396–401

    Article  CAS  Google Scholar 

  6. Taylor MD, Poppleton H, Fuller C, et al (2005) Radial glial cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335

    Article  PubMed  CAS  Google Scholar 

  7. Yi L, Zhou ZH, Ping YF, et al (2007) Isolation and characterization of stem cell-like precursor cells from primary human anaplastic oligoastrocytoma. Mod Pathol 20:1061–1068

    Article  PubMed  CAS  Google Scholar 

  8. Stupp R, Mason WP, van den Bent MJ, et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  9. Collins AT, Berry PA, Hyde C, et al (2006) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65: 10946–10951

    Article  Google Scholar 

  10. Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, et al (2006) Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness. Proc Natl Acad Sci U S A 103:11154–11159

    Article  PubMed  CAS  Google Scholar 

  11. Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature (Lond) 445:111–115

    Article  CAS  Google Scholar 

  12. O’Brien CA, Pollet A, Gallinger S, et al (2007) A human colon cancer cell capable of initiating tumor growth in immunodeficient mice. Nature (Lond) 445:106–110

    Article  CAS  Google Scholar 

  13. Li C, Heidt DG, Dalerba P, Burant CF, et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037

    Article  PubMed  CAS  Google Scholar 

  14. Matsui W, Huff CA, Wang Q, et al (2004) Characterization of cloning multiple myeloma cells. Blood 103:2332–2336

    Article  PubMed  CAS  Google Scholar 

  15. Fang D, Nguyen TK, Leishear K, et al (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65:9328–9337

    Article  PubMed  CAS  Google Scholar 

  16. Kondo T, Setoguchi T, Taga T (2004) Persistence of small subpopulation of cancer stem-like cells in C6 glioma cell lines. Proc Natl Acad Sci U S A 101:781–786

    Article  PubMed  CAS  Google Scholar 

  17. Suetsugu A, Nagaki M, Aoki H, et al (2006) Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 351:820–824

    Article  PubMed  CAS  Google Scholar 

  18. Chiba T, Kita K, Zheng YW, et al (2007) Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology 44:240–251

    Article  Google Scholar 

  19. Ho MM, Ng AV, Lam S, et al (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67:4827–4833

    Article  PubMed  CAS  Google Scholar 

  20. Haraguchi N, Utsunomiya T, Inoue H, et al (2006) Characterization of side population of cancer cells from human gastrointestinal system. Stem Cells 24:506–513

    Article  PubMed  CAS  Google Scholar 

  21. Mitsutake N, Iwao A, Nagai K, et al (2007) Characterization of side population in thyroid cancer cell lines: cancer stem-like cells are enriched partly but not exclusively. Endocrinology 148: 1797–1803

    Article  PubMed  CAS  Google Scholar 

  22. Hirschmann-Jax C, Foster AE, Wulf GG, et al (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 101:14228–14233

    Article  PubMed  CAS  Google Scholar 

  23. Ignatova TN, Kukekov VG, Laywell ED, et al (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neural markers in vitro. Glia 39:193–206

    Article  PubMed  Google Scholar 

  24. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of adult mammalian central nervous system. Science 255:1707–1710

    Article  PubMed  CAS  Google Scholar 

  25. Yuan X, Curtin J, Xiong Y, et al (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23:9392–9400

    Article  PubMed  CAS  Google Scholar 

  26. Galli R, Binda E, Orfanelli U, et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Article  PubMed  CAS  Google Scholar 

  27. Hemmati HD, Nakano I, Lazareff JA, et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100:15178–15183

    Article  PubMed  CAS  Google Scholar 

  28. Yin AH, Miraglia S, Zanjani ED, et al (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90:5002–5012

    PubMed  CAS  Google Scholar 

  29. Uchida N, Buck DW, He D, et al (2000) Direct isolation of human central nervous system cells. Proc Natl Acad Sci U S A 97: 14720–14725

    Article  PubMed  CAS  Google Scholar 

  30. Ding H, Roncari L, Shannon P, et al (2001) Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in transgenic mouse model of human glioma. Cancer Res 61:3826–3836

    PubMed  CAS  Google Scholar 

  31. Ding H, Shannon P, Lau N, et al (2003) Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a Ras transgenic mouse astrocytoma model. Cancer Res 63:1106–1113

    PubMed  CAS  Google Scholar 

  32. Zhu Y, Guignard F, Zhao D, et al (2005) Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8:119–130

    Article  PubMed  CAS  Google Scholar 

  33. Holland EC, Celestino J, Dai C, et al (2000) Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 25:55–57

    Article  PubMed  CAS  Google Scholar 

  34. Uhrbom L, Dai C, Celestino JC, et al (2002) Ink-4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res 62:5551–5558

    PubMed  CAS  Google Scholar 

  35. Dai C, Celestino JC, Okada Y, et al (2001) PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15:1913–1925

    Article  PubMed  CAS  Google Scholar 

  36. Sonoda Y, Ozawa T, Aldape KD, et al (2001) Formation of intracranial tumors by genetically modified human astrocytes defines pathways critical in the development of human anaplastic astrocytoma. Cancer Res 61:4956–4960

    PubMed  CAS  Google Scholar 

  37. Lee JS, Gil JE, Kim JH, et al (2008) Brain cancer stem-like cell genesis from p53-deficient mouse astrocytes by oncogenic Ras. Biochem Biophys Res Commun 365:496–502

    Article  PubMed  CAS  Google Scholar 

  38. Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, et al (2006) PDGFRα-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 551:187–199

    Article  PubMed  CAS  Google Scholar 

  39. Laywell ED, Rakic P, Kukekov VG, et al (2000) Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci U S A 97:13889–13894

    Article  Google Scholar 

  40. Kondo T, Raff M (2000) Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289: 1754–1757

    Article  PubMed  CAS  Google Scholar 

  41. Zucchi I, Sanzone S, Astigiano S, et al (2007) The properties of mammary gland cancer stem cells. Proc Natl Acad Sci U S A 104:10476–10481

    Article  PubMed  CAS  Google Scholar 

  42. Anisimov VN, Ukraintseva SV, Yashin AI (2005) Cancer in rodents: does it tell us about cancer in humans? Nat Rev Cancer 5:807–819

    Article  PubMed  CAS  Google Scholar 

  43. Frese KK, Tuverson DA (2007) Maximizing mouse cancer models. Nat Rev Cancer 7:645–658

    Article  PubMed  CAS  Google Scholar 

  44. Sakariassen PØ, Immervoll H, Chekenya M (2007) Cancer stem cells as mediators of treatment resistance in brain tumors: status and controversies. Neoplasia 9:882–892

    Article  PubMed  CAS  Google Scholar 

  45. Panchision DM, Chen HL, Pistollato F, et al (2007) Optimized flow cytometric analysis of central nervous system tissue reveals novel functional relationships among cells expressing CD133, CD15, and CD24. Stem Cells 25:1560–1570

    Article  PubMed  CAS  Google Scholar 

  46. Beier D, Hau P, Proescholdt M, et al (2007) CD133+ and CD133 glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015

    Article  PubMed  CAS  Google Scholar 

  47. Pfenninger CV, Roschupkina T, Hertwig F, et al (2007) CD133 is not present on neurogenic astrocytes in adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res 67:5727–5736

    Article  PubMed  CAS  Google Scholar 

  48. Coskun V, Wu H, Blanchi B, et al (2008) CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proc Natl Acad Sci U S A 105:1026–1031

    Article  PubMed  CAS  Google Scholar 

  49. Patrawala L, Calhoun T, Schneider-Broussard R, et al (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2 cancer cells are similarly tumorigenic. Cancer Res 65:6207–6219

    Article  PubMed  CAS  Google Scholar 

  50. Dean M, Fojo T, Bates S, et al (2005) Tumor stem cells and drug resistance. Nat Rev Cancer 5:275–284

    Article  PubMed  CAS  Google Scholar 

  51. Tang C, Ang BT, Pervaiz S (2007) Cancer stem cell: target for anti-cancer therapy. FASEB J 21:3777–3785

    Article  PubMed  CAS  Google Scholar 

  52. Kang MK, Kang SK (2007) Tumorigenesis of chemotherapeutic drug-resistant cancer stem-like cells in brain glioma. Stem Cells Dev 16:837–847

    Article  PubMed  CAS  Google Scholar 

  53. Salmaggi A, Boiardi A, Gelati M, et al (2006) Glioblastomaderived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistant phenotype. Glia 54:850–860

    Article  PubMed  Google Scholar 

  54. Liu G, Yuan X, Zeng Z, et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:6

    Article  Google Scholar 

  55. Eramo A, Ricci-Vitiani L, Zeuner A, et al (2006) Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ 13:1238–1241

    Article  PubMed  CAS  Google Scholar 

  56. Bao S, Wu Q, McLendon RE, et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature (Lond) 444:756–760

    Article  CAS  Google Scholar 

  57. Rich JN (2007) Cancer stem cells in radiation resistance. Cancer Res 67:8980–8984

    Article  PubMed  CAS  Google Scholar 

  58. Kinzler KW, Bigner SH, Bigner DD, et al (1987) Identification of an amplified, high expressed gene in a human glioma. Science 236:70–73

    Article  PubMed  CAS  Google Scholar 

  59. Dahmane N, Sanchez P, Gitton Y, et al (2001) The sonic hedgehog-Gli pathway regulates dorsal growth and tumorigenesis. Development (Camb) 128:5201–5212

    CAS  Google Scholar 

  60. Machold R, Hayashi S, Rutlin M, et al (2003) Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niche. Neuron 39:937–950

    Article  PubMed  CAS  Google Scholar 

  61. Solecki DJ, Liu XL, Tomoda T, et al (2001) Activated Notch2 signaling inhibits differentiation of cerebellar granule neuron precursors by maintaining proliferation. Neuron 31:557–568

    Article  PubMed  CAS  Google Scholar 

  62. Gaiano N, Fishell G (2002) The role of Notch in promoting glial and neural stem cell fates. Annu Rev Neurosci 25:471–490

    Article  PubMed  CAS  Google Scholar 

  63. Hitoshi S, Alexson T, Tropepe V, et al (2002) Notch pathway molecules are essential for the maintenance, but not generation, of mammalian neural stem cells. Genes Dev 16:846–858

    Article  PubMed  CAS  Google Scholar 

  64. Bar EE, Chaudhry A, Lin A, et al (2007) Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cell 25:2524–2533

    Article  CAS  Google Scholar 

  65. Clement V, Sanchez P, de Tribolet N, et al (2007) Hedgehog-Gli signaling regulates human glioma growth, cancer stem cell selfrenewal, and tumorigenicity. Curr Biol 17:165–172

    Article  PubMed  CAS  Google Scholar 

  66. Fan X, Matsui W, Khaki L, et al (2006) Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66:7445–7452

    Article  PubMed  CAS  Google Scholar 

  67. Shen Q, Goderie SK, Jin L, et al (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304:1338–1340

    Article  PubMed  CAS  Google Scholar 

  68. Forkins C, Man S, Xu P, et al (2007) Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res 67:3560–3564

    Article  Google Scholar 

  69. Calabrese C, Poppleton H, Kocak M, et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    Article  PubMed  CAS  Google Scholar 

  70. Piccirillo SGM, Reynolds BA, Zanetti N, et al (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumor-initiating cells. Nature (Lond) 444:761–765

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuichiro Hide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hide, T., Takezaki, T., Nakamura, H. et al. Brain tumor stem cells as research and treatment targets. Brain Tumor Pathol 25, 67–72 (2008). https://doi.org/10.1007/s10014-008-0237-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-008-0237-5

Key words

Navigation