Skip to main content

Advertisement

Log in

Molecular pathogenesis of IDH mutations in gliomas

  • Review Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

The isocitrate dehydrogenase 1 (IDH1) or 2 (IDH2) genes are mutated in 50–80% of astrocytomas, oligodendrogliomas or oligoastrocytomas of grades II and III, and secondary glioblastomas; they are, however, seldom mutated in primary glioblastomas and never in other types of glioma. Gliomas with IDH1/2 mutations always harbor either TP53 mutations or total 1p/19q loss. This suggests these two types of tumor may arise from common progenitor cells that have IDH1/2 mutations, subsequently evolving into each tumor type with the acquisition of TP53 mutations or total 1p/19q loss. Survival is significantly longer for patients with IDH-mutated gliomas than for those with IDH-wild type tumors. This observation indicates that IDH status defines biologically different subgroups among gliomas. The molecular pathogenesis of IDH1/2 mutations in the development of gliomas is unclear. The mutated IDH1/2 enzyme generates d-2-hydroxyglutarate. Several theories have been proposed, including: increased angiogenesis because of accumulation of HIF-1α; a glioma CpG island methylator phenotype (G-CIMP) induced by inhibition of TET2; and increased vulnerability to oxidative stress because of depletion of antioxidants. Elucidating the pathogenesis of IDH mutations will aid better understanding of the molecular mechanisms of gliomagenesis and may lead to the development of novel molecular classification and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

IDH:

Isocitrate dehydrogenase

CNS:

Central nervous system

WHO:

World Health Organization

AML:

Acute myeloid leukemia

CGI:

CpG island

TMZ:

Temozolomide

A:

Diffuse astrocytoma grade II

AA:

Anaplastic astrocytoma WHO grade III

pGB:

Primary glioblastoma WHO grade IV

sGB:

Secondary glioblastoma WHO grade IV

O:

Oligodendroglioma WHO grade II

AO:

Anaplastic oligodendroglioma WHO grade III

OA:

Oligoastrocytoma WHO grade II

AOA:

Anaplastic oligoastrocytoma WHO grade III

αKG:

α-Ketoglutarate

HIF-1α:

Hypoxia-inducible factor 1-alpha

VEGF:

Vascular endothelial growth factor

PHD:

Prolyl hydroxylase

G-CIMP:

Glioma CpG island methylator phenotype

5mC:

5-Methylcytosine

5hmC:

5-Hydroxymethylcytosine

HGA:

Hydroxyglutaric aciduria

HGDH:

Hydroxyglutarate dehydrogenase

GSH:

Glutathione

GSSG:

Glutathione disulfide

ROS:

Reactive oxygen species

NADP+ :

Nicotinamide adenine dinucleotide phosphate

NADPH:

Nicotinamide adenine dinucleotide phosphate (reduced form)

G6PD:

Glucose 6-phosphate dehydrogenase

FFPE:

Formalin-fixed paraffin-embedded

References

  1. Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812

    Article  PubMed  CAS  Google Scholar 

  2. Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    Article  PubMed  CAS  Google Scholar 

  3. Reitman ZJ, Yan H (2010) Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst 102:932–941

    Article  PubMed  CAS  Google Scholar 

  4. Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116:597–602

    Article  PubMed  CAS  Google Scholar 

  5. Jones DT, Mulholland SA, Pearson DM et al (2011) Adult grade II diffuse astrocytomas are genetically distinct from and more aggressive than their paediatric counterparts. Acta Neuropathol 121:753–761

    Article  PubMed  Google Scholar 

  6. Ichimura K, Pearson DM, Kocialkowski S et al (2009) IDH1 mutations are present in the majority of common adult gliomas but are rare in primary glioblastomas. Neuro Oncol 11:341–347

    Article  PubMed  CAS  Google Scholar 

  7. Korshunov A, Meyer J, Capper D et al (2009) Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol 118:401–405

    Article  PubMed  CAS  Google Scholar 

  8. Green A, Beer P (2010) Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms. N Engl J Med 362:369–370

    Article  PubMed  CAS  Google Scholar 

  9. Kosmider O, Gelsi-Boyer V, Slama L et al (2010) Mutations of IDH1 and IDH2 genes in early and accelerated phases of myelodysplastic syndromes and MDS/myeloproliferative neoplasms. Leukemia 24:1094–1096

    Article  PubMed  CAS  Google Scholar 

  10. Mardis ER, Ding L, Dooling DJ et al (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361:1058–1066

    Article  PubMed  CAS  Google Scholar 

  11. Amary MF, Bacsi K, Maggiani F et al (2011) IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 224:334–343

    Article  PubMed  CAS  Google Scholar 

  12. Amary MF, Damato S, Halai D et al (2011) Ollier disease and Maffucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2. Nat Genet 43:1262–1265

    Article  PubMed  CAS  Google Scholar 

  13. Pansuriya TC, van Eijk R, d’Adamo P et al (2011) Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nat Genet 43:1256–1261

    Article  PubMed  CAS  Google Scholar 

  14. Bleeker FE, Lamba S, Leenstra S et al (2009) IDH1 mutations at residue p.R132 (IDH1(R132)) occur frequently in high-grade gliomas but not in other solid tumors. Hum Mutat 30:7–11

    Article  PubMed  CAS  Google Scholar 

  15. Kang MR, Kim MS, Oh JE et al (2009) Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Int J Cancer 125:353–355

    Article  PubMed  CAS  Google Scholar 

  16. Shibata T, Kokubu A, Miyamoto M, Sasajima Y, Yamazaki N (2011) Mutant IDH1 confers an in vivo growth in a melanoma cell line with BRAF mutation. Am J Pathol 178:1395–1402

    Article  PubMed  CAS  Google Scholar 

  17. Yen KE, Bittinger MA, Su SM, Fantin VR (2010) Cancer-associated IDH mutations: biomarker and therapeutic opportunities. Oncogene 29:6409–6417

    Article  PubMed  CAS  Google Scholar 

  18. Hartmann C, Meyer J, Balss J et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118:469–474

    Article  PubMed  Google Scholar 

  19. Pusch S, Sahm F, Meyer J, Mittelbronn M, Hartmann C, von Deimling A (2011) Glioma IDH1 mutation patterns off the beaten track. Neuropathol Appl Neurobiol 37:428–430

    Article  PubMed  CAS  Google Scholar 

  20. Hartmann C, Hentschel B, Wick W et al (2010) Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 120:707–718

    Article  PubMed  Google Scholar 

  21. Jenkins RB, Blair H, Ballman KV et al (2006) A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res 66:9852–9861

    Article  PubMed  CAS  Google Scholar 

  22. Ohgaki H, Kleihues P (2011) Genetic profile of astrocytic and oligodendroglial gliomas. Brain Tumor Pathol 28:177–183

    Article  PubMed  CAS  Google Scholar 

  23. Watanabe T, Nobusawa S, Kleihues P, Ohgaki H (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174:1149–1153

    Article  PubMed  CAS  Google Scholar 

  24. Zhao S, Lin Y, Xu W et al (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324:261–265

    Article  PubMed  CAS  Google Scholar 

  25. Jin G, Reitman ZJ, Spasojevic I et al (2011) 2-hydroxyglutarate production, but not dominant negative function, is conferred by glioma-derived NADP-dependent isocitrate dehydrogenase mutations. PLoS ONE 6:e16812

    Article  PubMed  CAS  Google Scholar 

  26. Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 465:966

    Article  Google Scholar 

  27. Xu W, Yang H, Liu Y et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30

    Article  PubMed  CAS  Google Scholar 

  28. Williams SC, Karajannis MA, Chiriboga L, Golfinos JG, von Deimling A, Zagzag D (2011) R132H-mutation of isocitrate dehydrogenase-1 is not sufficient for HIF-1alpha upregulation in adult glioma. Acta Neuropathol 121:279–281

    Article  PubMed  Google Scholar 

  29. Noushmehr H, Weisenberger DJ, Diefes K et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17:510–522

    Article  PubMed  CAS  Google Scholar 

  30. Figueroa ME, Abdel-Wahab O, Lu C et al (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:553–567

    Article  PubMed  CAS  Google Scholar 

  31. Turcan S, Rohle D, Goenka A et al (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature [Epub ahead of print]

  32. Lu C, Ward PS, Kapoor GS et al (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature [Epub ahead of print]

  33. Aghili M, Zahedi F, Rafiee E (2009) Hydroxyglutaric aciduria and malignant brain tumor: a case report and literature review. J Neurooncol 91:233–236

    Article  PubMed  Google Scholar 

  34. Krell D, Assoku M, Galloway M, Mulholland P, Tomlinson I, Bardella C (2011) Screen for IDH1, IDH2, IDH3, D2HGDH and L2HGDH mutations in glioblastoma. PLoS ONE 6:e19868

    Article  PubMed  CAS  Google Scholar 

  35. Brehmer S, Pusch S, Schmieder K, von Deimling A, Hartmann C (2011) Mutational analysis of D2HGDH and L2HGDH in brain tumours without IDH1 or IDH2 mutations. Neuropathol Appl Neurobiol 37:330–332

    Article  PubMed  CAS  Google Scholar 

  36. Jin SG, Jiang Y, Qiu R et al (2011) 5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations. Cancer Res 71:7360–7365

    Article  PubMed  CAS  Google Scholar 

  37. Kim YH, Pierscianek D, Mittelbronn M et al (2011) TET2 promoter methylation in low-grade diffuse gliomas lacking IDH1/2 mutations. J Clin Pathol 64:850–852

    Article  PubMed  CAS  Google Scholar 

  38. Dringen R, Bishop GM, Koeppe M, Dang TN, Robinson SR (2007) The pivotal role of astrocytes in the metabolism of iron in the brain. Neurochem Res 32:1884–1890

    Article  PubMed  CAS  Google Scholar 

  39. Pratico D (2008) Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol Sci 29:609–615

    Article  PubMed  CAS  Google Scholar 

  40. Maynard S, Schurman SH, Harboe C, de Souza-Pinto NC, Bohr VA (2009) Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 30:2–10

    Article  PubMed  CAS  Google Scholar 

  41. Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. Biomed Pharmacother 57:145–155

    Article  PubMed  CAS  Google Scholar 

  42. Lee SM, Koh HJ, Park DC, Song BJ, Huh TL, Park JW (2002) Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med 32:1185–1196

    Article  PubMed  CAS  Google Scholar 

  43. Mailloux RJ, Beriault R, Lemire J et al (2007) The tricarboxylic acid cycle, an ancient metabolic network with a novel twist. PLoS ONE 2:e690

    Article  PubMed  Google Scholar 

  44. Kim SY, Park JW (2003) Cellular defense against singlet oxygen-induced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase. Free Radic Res 37:309–316

    Article  PubMed  CAS  Google Scholar 

  45. Lieber MR (2008) The mechanism of human nonhomologous DNA end joining. J Biol Chem 283:1–5

    Article  PubMed  CAS  Google Scholar 

  46. Koptyra M, Cramer K, Slupianek A, Richardson C, Skorski T (2008) BCR/ABL promotes accumulation of chromosomal aberrations induced by oxidative and genotoxic stress. Leukemia 22:1969–1972

    Article  PubMed  CAS  Google Scholar 

  47. Luchman HA, Stechishin OD, Dang NH et al (2012) An in vivo patient-derived model of endogenous IDH1-mutant glioma. Neuro Oncol 14:184–191

    Article  PubMed  Google Scholar 

  48. van den Bent MJ, Dubbink HJ, Marie Y et al (2010) IDH1 and IDH2 mutations are prognostic but not predictive for outcome in anaplastic oligodendroglial tumors: a report of the European Organization for Research and Treatment of Cancer Brain Tumor Group. Clin Cancer Res 16:1597–1604

    Article  PubMed  Google Scholar 

  49. Hartmann C, Hentschel B, Tatagiba M et al (2011) Molecular markers in low-grade gliomas: predictive or prognostic? Clin Cancer Res 17:4588–4599

    Article  PubMed  CAS  Google Scholar 

  50. Mukasa A, Takayanagi S, Saito K et al (2011) Significance of IDH mutations varies with tumor histology, grade, and genetics in Japanese glioma patients. Cancer Sci

  51. Sanson M, Marie Y, Paris S et al (2009) Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol 27:4150–4154

    Article  PubMed  CAS  Google Scholar 

  52. Tabatabai G, Stupp R, van den Bent MJ et al (2010) Molecular diagnostics of gliomas: the clinical perspective. Acta Neuropathol 120:585–592

    Article  PubMed  CAS  Google Scholar 

  53. Lai A, Kharbanda S, Pope WB et al (2011) Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. J Clin Oncol 29:4482–4490

    Article  PubMed  CAS  Google Scholar 

  54. Nobusawa S, Watanabe T, Kleihues P, Ohgaki H (2009) IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res 15:6002–6007

    Article  PubMed  CAS  Google Scholar 

  55. Horbinski C, Kofler J, Kelly LM, Murdoch GH, Nikiforova MN (2009) Diagnostic use of IDH1/2 mutation analysis in routine clinical testing of formalin-fixed, paraffin-embedded glioma tissues. J Neuropathol Exp Neurol 68:1319–1325

    Article  PubMed  CAS  Google Scholar 

  56. Capper D, Reuss D, Schittenhelm J et al (2011) Mutation-specific IDH1 antibody differentiates oligodendrogliomas and oligoastrocytomas from other brain tumors with oligodendroglioma-like morphology. Acta Neuropathol 121:241–252

    Article  PubMed  Google Scholar 

  57. Riemenschneider MJ, Jeuken JW, Wesseling P, Reifenberger G (2010) Molecular diagnostics of gliomas: state of the art. Acta Neuropathol 120:567–584

    Article  PubMed  CAS  Google Scholar 

  58. Andronesi OC, Kim GS, Gerstner E et al (2012) Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci Transl Med 4:116ra4

    Article  PubMed  CAS  Google Scholar 

  59. Choi C, Ganji SK, Deberardinis RJ et al (2012) 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med

  60. Felsberg J, Wolter M, Seul H et al (2010) Rapid and sensitive assessment of the IDH1 and IDH2 mutation status in cerebral gliomas based on DNA pyrosequencing. Acta Neuropathol 119:501–507

    Article  PubMed  CAS  Google Scholar 

  61. Takano S, Tian W, Matsuda M et al (2011) Detection of IDH1 mutation in human gliomas: comparison of immunohistochemistry and sequencing. Brain Tumor Pathol 28:115–123

    Article  PubMed  CAS  Google Scholar 

  62. Kaneko MK, Tian W, Takano S et al (2011) Establishment of a novel monoclonal antibody SMab-1 specific for IDH1-R132S mutation. Biochem Biophys Res Commun 406:608–613

    Article  PubMed  CAS  Google Scholar 

  63. Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445–1453

    Article  PubMed  CAS  Google Scholar 

  64. Jones DT, Kocialkowski S, Liu L et al (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68:8673–8677

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Dr Sylvia Kocialkowski for the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Ichimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ichimura, K. Molecular pathogenesis of IDH mutations in gliomas. Brain Tumor Pathol 29, 131–139 (2012). https://doi.org/10.1007/s10014-012-0090-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-012-0090-4

Keywords

Navigation