Skip to main content

Advertisement

Log in

Recent advance in molecular angiogenesis in glioblastoma: the challenge and hope for anti-angiogenic therapy

  • Review Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

Glioblastoma (GBM) is the most highly malignant brain tumor in the human central nerve system. In this paper, we review new and significant molecular findings on angiogenesis and possible resistance mechanisms. Expression of a number of genes and regulators has been shown to be upregulated in GBM microvessel cells, such as interleukin-8, signal transducer and activator of transcription 3, Tax-interacting protein-1, hypoxia induced factor-1 and anterior gradient protein 2. The regulator factors that may strongly promote angiogenesis by promoting endothelial cell metastasis, changing the microenvironment, enhancing the ability of resistance to anti-angiogenic therapy, and that inhibit angiogenesis are reviewed. Based on the current knowledge, several potential targets and strategies are proposed for better therapeutic outcomes, such as its mRNA interference of DII4-Notch signaling pathway and depletion of b1 integrin expression. We also discuss possible mechanisms underlying the resistance to anti-angiogenesis and future directions and challenges in developing new targeted therapy for GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Onishi M, Kurozumi K, Ichikawa T, Date I (2013) Mechanisms of tumor development and anti-angiogenic therapy in glioblastoma multiforme. Neurol Med Chir (Tokyo) 53:755–763

    Article  Google Scholar 

  2. Soda Y, Myskiw C, Rommel A, Verma IM (2013) Mechanisms of neovascularization and resistance to anti-angiogenic therapies in glioblastoma multiforme. J Mol Med (Berl) 91:439–448

    Article  CAS  Google Scholar 

  3. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998

    Article  CAS  PubMed  Google Scholar 

  4. Gatson NN, Chiocca EA, Kaur B (2012) Anti-angiogenic gene therapy in the treatment of malignant gliomas. Neurosci Lett 527:62–70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kukk E, Lymboussaki A, Taira S, Kaipainen A, Jeltsch M, Joukov V, Alitalo K (1996) VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development (Cambridge, England) 122:3829–3837

    CAS  Google Scholar 

  6. Stratmann A, Machein MR, Plate KH (1997) Anti-angiogenic gene therapy of malignant glioma. Acta Neurochir Suppl 68:105–110

    CAS  PubMed  Google Scholar 

  7. Witmer AN, Dai J, Weich HA, Vrensen GF, Schlingemann RO (2002) Expression of vascular endothelial growth factor receptors 1, 2, and 3 in quiescent endothelia. J Histochem Cytochem 50:767–777

    Article  CAS  PubMed  Google Scholar 

  8. Klagsbrun M, D’Amore PA (1996) Vascular endothelial growth factor and its receptors. Cytokine Growth Factor Rev 7:259–270

    Article  CAS  PubMed  Google Scholar 

  9. Yao X, Ping Y, Liu Y, Chen K, Yoshimura T, Liu M, Gong W, Chen C, Niu Q, Guo D (2013) Vascular endothelial growth factor receptor 2 (VEGFR-2) plays a key role in vasculogenic mimicry formation, neovascularization and tumor initiation by glioma stem-like cells. PLoS One 8:e57188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. D’Alessandris QG, Martini M, Cenci T, Capo G, Ricci-Vitiani L, Larocca LM, Pallini R (2015) VEGF isoforms as outcome biomarker for anti-angiogenic therapy in recurrent glioblastoma. Neurology 84:1906

    Article  PubMed  Google Scholar 

  11. Huang H, Held-Feindt J, Buhl R, Mehdorn HM, Mentlein R (2005) Expression of VEGF and its receptors in different brain tumors. Neurol Res 27:371–377

    Article  CAS  PubMed  Google Scholar 

  12. Tillo M, Erskine L, Cariboni A, Fantin A, Joyce A, Denti L, Ruhrberg C (2015) VEGF189 binds NRP1 and is sufficient for VEGF/NRP1-dependent neuronal patterning in the developing brain. Development 142:314–319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Krishnan S, Szabo E, Burghardt I, Frei K, Tabatabai G, Weller M (2015) Modulation of cerebral endothelial cell function by TGF-beta in glioblastoma: VEGF-dependent angiogenesis versus endothelial mesenchymal transition. Oncotarget 6:22480–22495

    Article  PubMed  Google Scholar 

  14. Liu X, Liu K, Qin J, Hao L, Li X, Liu Y, Zhang X, Liu X, Li P, Han S, Mao Z, Shen L (2015) C/EBPβ promotes angiogenesis through secretion of IL-6, which is inhibited by genistein, in EGFRvIII-positive glioblastoma. Int J Cancer 136:2524–2534

    Article  CAS  PubMed  Google Scholar 

  15. Nijaguna MB, Patil V, Urbach S, Shwetha SD, Sravani K, Hegde AS, Chandramouli BA, Arivazhagan A, Marin P, Santosh V, Somasundaram K (2015) Glioblastoma-derived macrophage colony stimulating factor (MCSF) induces microglial release of insulin-like growth factor-binding protein 1 (IGFBP1) to promote angiogenesis. J Biol Chem 290:23401–23415

    Article  CAS  PubMed  Google Scholar 

  16. Takahashi H, Inoue A, Kawabe Y, Hosokawa Y, Iwata S, Sugimoto K, Yano H, Yamashita D, Harada H, Kohno S, Ohue S, Ohnishi T, Tanaka J (2015) Oct-3/4 promotes tumor angiogenesis through VEGF production in glioblastoma. Brain Tumor Pathol 32:31–40

    Article  CAS  PubMed  Google Scholar 

  17. Pham K, Luo D, Siemann DW, Law BK, Reynolds BA, Hothi P, Foltz G, Harrison JK (2015) VEGFR inhibitors upregulate CXCR4 in VEGF receptor-expressing glioblastoma in a TGFbetaR signaling-dependent manner. Cancer Lett 360:60–67

    Article  CAS  PubMed  Google Scholar 

  18. Tabouret E, Tchoghandjian A, Denicolai E, Delfino C, Metellus P, Graillon T, Boucard C, Nanni I, Padovani L, Ouafik L, Figarella-Branger D, Chinot O (2015) Recurrence of glioblastoma after radio-chemotherapy is associated with an angiogenic switch to the CXCL12-CXCR4 pathway. Oncotarget 6:11664–11675

    Article  PubMed Central  PubMed  Google Scholar 

  19. Bonavia R, Inda MM, Vandenberg S, Cheng SY, Nagane M, Hadwiger P, Tan P, Sah DW, Cavenee WK, Furnari FB (2012) EGFRvIII promotes glioma angiogenesis and growth through the NF-kappaB, interleukin-8 pathway. Oncogene 31:4054–4066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Palmer K (2000) ASGT—third meeting. Recent advances in clinical gene therapy. IDrugs 3:1016–1017

    CAS  PubMed  Google Scholar 

  21. Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304:1338–1340

    Article  CAS  PubMed  Google Scholar 

  22. Li Q, Ford MC, Lavik EB, Madri JA (2006) Modeling the neurovascular niche: vEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: an in vitro study. J Neurosci Res 84:1656–1668

    Article  CAS  PubMed  Google Scholar 

  23. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    Article  CAS  PubMed  Google Scholar 

  24. Gilbertson RJ, Rich JN (2007) Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7:733–736

    Article  CAS  PubMed  Google Scholar 

  25. Anderson JC, McFarland BC, Gladson CL (2008) New molecular targets in angiogenic vessels of glioblastoma tumours. Expert Rev Mol Med 10:e23

    Article  PubMed Central  PubMed  Google Scholar 

  26. Reardon DA, Wen PY, Desjardins A, Batchelor TT, Vredenburgh JJ (2008) Glioblastoma multiforme: an emerging paradigm of anti-VEGF therapy. Expert Opin Biol Ther 8:541–553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. McIntyre A, Patiar S, Wigfield S, Li JL, Ledaki I, Turley H, Leek R, Snell C, Gatter K, Sly WS, Vaughan-Jones RD, Swietach P, Harris AL (2012) Carbonic anhydrase IX promotes tumor growth and necrosis in vivo and inhibition enhances anti-VEGF therapy. Clin Cancer Res 18:3100–3111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Norden AD, Drappatz J, Muzikansky A, David K, Gerard M, McNamara MB, Phan P, Ross A, Kesari S, Wen PY (2009) An exploratory survival analysis of anti-angiogenic therapy for recurrent malignant glioma. J Neurooncol 92:149–155

    Article  CAS  PubMed  Google Scholar 

  29. Junes-Gill KS, Lawrence CE, Wheeler CJ, Cordner R, Gill TG, Mar V, Shiri L, Basile LA (2014) Human hematopoietic signal peptide-containing secreted 1 (hHSS1) modulates genes and pathways in glioma: implications for the regulation of tumorigenicity and angiogenesis. BMC Cancer 14:920

    Article  PubMed Central  PubMed  Google Scholar 

  30. Kim KH, Kim D, Park JY, Jung HJ, Cho YH, Kim HK, Han J, Choi KY, Kwon HJ (2015) NNC 55-0396, a T-type Ca2+ channel inhibitor, inhibits angiogenesis via suppression of hypoxia-inducible factor-1alpha signal transduction. J Mol Med (Berl) 93:499–509

    Article  CAS  Google Scholar 

  31. Tate CM, Mc Entire J, Pallini R, Vakana E, Wyss L, Blosser W, Ricci-Vitiani L, D’Alessandris QG, Morgante L, Giannetti S, Larocca LM, Todaro M, Benfante A, Colorito ML, Stassi G, De Maria R, Rowlinson S, Stancato L (2015) A BMP7 variant inhibits tumor angiogenesis in vitro and in vivo through direct modulation of endothelial cell biology. PLoS One 10:e0125697

    Article  PubMed Central  PubMed  Google Scholar 

  32. Zhu Y, Zhao K, Prinz A, Keyvani K, Lambertz N, Kreitschmann-Andermahr I, Lei T, Sure U (2015) Loss of endothelial programmed cell death 10 activates glioblastoma cells and promotes tumor growth. Neuro Oncol. doi:10.1093/neuonc/nov155

    Google Scholar 

  33. Yuan G, Yan S, Xue H, Zhang P, Sun J, Li G (2015) JSI-124 suppresses invasion and angiogenesis of glioblastoma cells in vitro. PLoS One 10:e0118894

    Article  PubMed Central  PubMed  Google Scholar 

  34. Kieran MW, Kalluri R, Cho YJ (2012) The VEGF pathway in cancer and disease: responses, resistance, and the path forward. Cold Spring Harbor Perspect Med 2:a006593

    Article  Google Scholar 

  35. Chu SH, Ma YB, Feng DF, Zhang H, Zhu ZA, Li ZQ, Jiang PC (2012) Upregulation of SATB1 is associated with the development and progression of glioma. J Transl Med 10:149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Zhou W, Xu Y, Gao G, Jiang Z, Li X (2013) Irradiated normal brain promotes invasion of glioblastoma through vascular endothelial growth and stromal cell-derived factor 1alpha. NeuroReport 24:730–734

    Article  CAS  PubMed  Google Scholar 

  37. Bode J, Veenman L, Caballero B, Lakomek M, Kugler W, Gavish M (2012) The 18 kDa translocator protein influences angiogenesis, as well as aggressiveness, adhesion, migration, and proliferation of glioblastoma cells. Pharmacogenet Genomics 22:538–550

    Article  CAS  PubMed  Google Scholar 

  38. Wu ZB, Cai L, Lin SJ, Leng ZG, Guo YH, Yang WL, Chu YW, Yang SH, Zhao WG (2015) Heat shock protein 47 promotes glioma angiogenesis. Brain Pathol. doi:10.1111/bpa.12256

    PubMed  Google Scholar 

  39. Onishi M, Ichikawa T, Kurozumi K, Inoue S, Maruo T, Otani Y, Fujii K, Ishida J, Shimazu Y, Yoshida K, Michiue H, Antonio Chiocca E, Date I (2015) Annexin A2 regulates angiogenesis and invasion phenotypes of malignant glioma. Brain Tumor Pathol 32:184–194

    Article  CAS  PubMed  Google Scholar 

  40. Scully S, Francescone R, Faibish M, Bentley B, Taylor SL, Oh D, Schapiro R, Moral L, Yan W, Shao R (2012) Transdifferentiation of glioblastoma stem-like cells into mural cells drives vasculogenic mimicry in glioblastomas. J Neurosci 32:12950–12960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Shawahna R, Uchida Y, Decleves X, Ohtsuki S, Yousif S, Dauchy S, Jacob A, Chassoux F, Daumas-Duport C, Couraud PO, Terasaki T, Scherrmann JM (2011) Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm 8:1332–1341

    Article  CAS  PubMed  Google Scholar 

  42. Matsuda Y, Hagio M, Ishiwata T (2013) Nestin: a novel angiogenesis marker and possible target for tumor angiogenesis. World J Gastroenterol 19:42–48

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. He H, Niu CS, Li MW (2012) Correlation between glioblastoma stem-like cells and tumor vascularization. Oncol Rep 27:45–50

    PubMed  Google Scholar 

  44. Yang H, Lee S, Lee S, Kim K, Yang Y, Kim JH, Adams RH, Wells JM, Morrison SJ, Koh GY, Kim I (2013) Sox17 promotes tumor angiogenesis and destabilizes tumor vessels in mice. J Clin Investig 123:418–431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Zerrouqi A, Pyrzynska B, Febbraio M, Brat DJ, Van Meir EG (2012) P14ARF inhibits human glioblastoma-induced angiogenesis by upregulating the expression of TIMP3. J Clin Investig 122:1283–1295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Dieterich LC, Mellberg S, Langenkamp E, Zhang L, Zieba A, Salomaki H, Teichert M, Huang H, Edqvist PH, Kraus T, Augustin HG, Olofsson T, Larsson E, Soderberg O, Molema G, Ponten F, Georgii-Hemming P, Alafuzoff I, Dimberg A (2012) Transcriptional profiling of human glioblastoma vessels indicates a key role of VEGF-A and TGFbeta2 in vascular abnormalization. J Pathol 228:378–390

    Article  CAS  PubMed  Google Scholar 

  47. Jubb AM, Browning L, Campo L, Turley H, Steers G, Thurston G, Harris AL, Ansorge O (2012) Expression of vascular Notch ligands Delta-like 4 and Jagged-1 in glioblastoma. Histopathology 60:740–747

    Article  PubMed  Google Scholar 

  48. Berindan-Neagoe I, Chiorean R, Braicu C, Florian IS, Leucuta D, Crisan D, Cocis A, Balacescu O, Irimie A (2012) Quantitative mRNA expression of genes involved in angiogenesis, coagulation and inflammation in multiforme glioblastoma tumoral tissue versus peritumoral brain tissue: lack of correlation with clinical data. Eur Cytokine Netw 23:45–55

    CAS  PubMed  Google Scholar 

  49. Mao XG, Xue XY, Wang L, Zhang X, Yan M, Tu YY, Lin W, Jiang XF, Ren HG, Zhang W, Song SJ (2013) CDH5 is specifically activated in glioblastoma stemlike cells and contributes to vasculogenic mimicry induced by hypoxia. Neuro-Oncology 15:865–879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Wong HK, Fatimy RE, Onodera C, Wei Z, Yi M, Mohan A, Gowrisankaran S, Karmali P, Marcusson E, Wakimoto H, Stephens R, Uhlmann EJ, Song JS, Tannous B, Krichevsky AM (2015) The Cancer Genome Atlas Analysis Predicts MicroRNA for Targeting Cancer Growth and Vascularization in Glioblastoma. Mol Ther 23:1234–1247

    Article  CAS  PubMed  Google Scholar 

  51. Jiang X, Yan Y, Hu M, Chen X, Wang Y, Dai Y, Wu D, Wang Y, Zhuang Z, Xia H (2015) Increased level of H19 long noncoding RNA promotes invasion, angiogenesis, and stemness of glioblastoma cells. J Neurosurg 14:1–8

    Article  CAS  Google Scholar 

  52. Cheng SY, Huang HJ, Nagane M, Ji XD, Wang D, Shih CC, Arap W, Huang CM, Cavenee WK (1996) Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. Proc Natl Acad Sci USA 93:8502–8507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. De Bonis P, Marziali G, Vigo V, Peraio S, Pompucci A, Anile C, Mangiola A (2013) Antiangiogenic therapy for high-grade gliomas: current concepts and limitations. Expert Rev Neurother 13:1263–1270

    Article  PubMed  Google Scholar 

  54. Doucette TA, Kong LY, Yang Y, Ferguson SD, Yang J, Wei J, Qiao W, Fuller GN, Bhat KP, Aldape K, Priebe W, Bogler O, Heimberger AB, Rao G (2012) Signal transducer and activator of transcription 3 promotes angiogenesis and drives malignant progression in glioma. Neuro Oncol 14:1136–1145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Dwyer J, Hebda JK, Le Guelte A, Galan-Moya EM, Smith SS, Azzi S, Bidere N, Gavard J (2012) Glioblastoma cell-secreted interleukin-8 induces brain endothelial cell permeability via CXCR2. PLoS One 7:e45562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Han M, Wang H, Zhang HT, Han Z (2013) Expression of Tax-interacting protein 1 (TIP-1) facilitates angiogenesis and tumor formation of human glioblastoma cells in nude mice. Cancer Lett 328:55–64

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Hong X, Jiang F, Kalkanis SN, Zhang ZG, Zhang XP, DeCarvalho AC, Katakowski M, Bobbitt K, Mikkelsen T, Chopp M (2006) SDF-1 and CXCR4 are up-regulated by VEGF and contribute to glioma cell invasion. Cancer Lett 236:39–45

    Article  CAS  PubMed  Google Scholar 

  58. Francescone R, Scully S, Bentley B, Yan W, Taylor SL, Oh D, Moral L, Shao R (2012) Glioblastoma-derived tumor cells induce vasculogenic mimicry through Flk-1 protein activation. J Biol Chem 287:24821–24831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Hong XY, Wang J, Li Z (2013) AGR2 expression is regulated by HIF-1 and contributes to growth and angiogenesis of glioblastoma. Cell Biochem Biophys 67:1487–1495

    Article  CAS  PubMed  Google Scholar 

  60. Kang SH, Yu MO, Park KJ, Chi SG, Park DH, Chung YG (2010) Activated STAT3 regulates hypoxia-induced angiogenesis and cell migration in human glioblastoma. Neurosurgery 67:1386–1395 (discussion 1395)

    Article  PubMed  Google Scholar 

  61. Kucharzewska P, Christianson HC, Welch JE, Svensson KJ, Fredlund E, Ringner M, Morgelin M, Bourseau-Guilmain E, Bengzon J, Belting M (2013) Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci USA 110:7312–7317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Kigel B, Rabinowicz N, Varshavsky A, Kessler O, Neufeld G (2011) Plexin-A4 promotes tumor progression and tumor angiogenesis by enhancement of VEGF and bFGF signaling. Blood 118:4285–4296

    Article  CAS  PubMed  Google Scholar 

  63. Carpenter RL, Paw I, Zhu H, Sirkisoon S, Xing F, Watabe K, Debinski W, Lo HW (2015) The gain-of-function GLI1 transcription factor TGLI1 enhances expression of VEGF-C and TEM7 to promote glioblastoma angiogenesis. Oncotarget 6:22653–22665

    Article  PubMed  Google Scholar 

  64. Babae N, Bourajjaj M, Liu Y, Van Beijnum JR, Cerisoli F, Scaria PV, Verheul M, Van Berkel MP, Pieters EH, Van Haastert RJ, Yousefi A, Mastrobattista E, Storm G, Berezikov E, Cuppen E, Woodle M, Schaapveld RQ, Prevost GP, Griffioen AW, Van Noort PI, Schiffelers RM (2014) Systemic miRNA-7 delivery inhibits tumor angiogenesis and growth in murine xenograft glioblastoma. Oncotarget 5:6687–6700

    Article  PubMed Central  PubMed  Google Scholar 

  65. Sun J, Zheng G, Gu Z, Guo Z (2015) MiR-137 inhibits proliferation and angiogenesis of human glioblastoma cells by targeting EZH2. J Neurooncol 122:481–489

    Article  CAS  PubMed  Google Scholar 

  66. Gagliardi F, Narayanan A, Reni M, Franzin A, Mazza E, Boari N, Bailo M, Zordan P, Mortini P (2014) The role of CXCR4 in highly malignant human gliomas biology: current knowledge and future directions. Glia 62:1015–1023

    Article  PubMed  Google Scholar 

  67. Lee WS, Pyun BJ, Kim SW, Shim SR, Nam JR, Yoo JY, Jin Y, Jin J, Kwon YG, Yun CO, Nam DH, Oh K, Lee DS, Lee SH, Yoo JS (2015) TTAC-0001, a human monoclonal antibody targeting VEGFR-2/KDR, blocks tumor angiogenesis. MAbs 7:957–968

    Article  PubMed  Google Scholar 

  68. Miyazaki T, Taketomi Y, Saito Y, Hosono T, Lei XF, Kim-Kaneyama JR, Arata S, Takahashi H, Murakami M, Miyazaki A (2015) Calpastatin counteracts pathological angiogenesis by inhibiting suppressor of cytokine signaling 3 degradation in vascular endothelial cells. Circ Res 116:1170–1181

    Article  CAS  PubMed  Google Scholar 

  69. Batchelor TT, Reardon DA, de Groot JF, Wick W, Weller M (2014) Antiangiogenic therapy for glioblastoma: current status and future prospects. Clin Cancer Res 20:5612–5619

    Article  CAS  PubMed  Google Scholar 

  70. Lu-Emerson C, Duda DG, Emblem KE, Taylor JW, Gerstner ER, Loeffler JS, Batchelor TT, Jain RK (2015) Lessons from anti-vascular endothelial growth factor and anti-vascular endothelial growth factor receptor trials in patients with glioblastoma. J Clin Oncol 33:1197–1213

    Article  CAS  PubMed  Google Scholar 

  71. Schiff D, Kesari S, de Groot J, Mikkelsen T, Drappatz J, Coyle T, Fichtel L, Silver B, Walters I, Reardon D (2015) Phase 2 study of CT-322, a targeted biologic inhibitor of VEGFR-2 based on a domain of human fibronectin, in recurrent glioblastoma. Invest New Drugs 33:247–253

    Article  CAS  PubMed  Google Scholar 

  72. Sul J, Fine HA (2010) Malignant gliomas: new translational therapies. Mt Sinai J Med 77:655–666

    Article  PubMed  Google Scholar 

  73. Borovski T, Beke P, van Tellingen O, Rodermond HM, Verhoeff JJ, Lascano V, Daalhuisen JB, Medema JP, Sprick MR (2013) Therapy-resistant tumor microvascular endothelial cells contribute to treatment failure in glioblastoma multiforme. Oncogene 32:1539–1548

    Article  CAS  PubMed  Google Scholar 

  74. El Hindy N, Keyvani K, Pagenstecher A, Dammann P, Sandalcioglu IE, Sure U, Zhu Y (2013) Implications of Dll4-Notch signaling activation in primary glioblastoma multiforme. Neuro-Oncology 15:1366–1378

    Article  PubMed Central  PubMed  Google Scholar 

  75. Carbonell WS, DeLay M, Jahangiri A, Park CC, Aghi MK (2013) beta1 integrin targeting potentiates antiangiogenic therapy and inhibits the growth of bevacizumab-resistant glioblastoma. Cancer Res 73:3145–3154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Jahangiri A, De Lay M, Miller LM, Carbonell WS, Hu YL, Lu K, Tom MW, Paquette J, Tokuyasu TA, Tsao S, Marshall R, Perry A, Bjorgan KM, Chaumeil MM, Ronen SM, Bergers G, Aghi MK (2013) Gene expression profile identifies tyrosine kinase c-Met as a targetable mediator of antiangiogenic therapy resistance. Clin Cancer Res 19:1773–1783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. de Groot J, Liang J, Kong LY, Wei J, Piao Y, Fuller G, Qiao W, Heimberger AB (2012) Modulating antiangiogenic resistance by inhibiting the signal transducer and activator of transcription 3 pathway in glioblastoma. Oncotarget 3:1036–1048

    Article  PubMed Central  PubMed  Google Scholar 

  78. Kawasoe T, Takeshima H, Yamashita S, Mizuguchi S, Fukushima T, Yokogami K, Yamasaki K (2015) Detection of p53 mutations in proliferating vascular cells in glioblastoma multiforme. J Neurosurg 122:317–323

    Article  PubMed  Google Scholar 

  79. Yan GN, Lv YF, Yang L, Yao XH, Cui YH, Guo DY (2013) Glioma stem cells enhance endothelial cell migration and proliferation via the Hedgehog pathway. Oncol Lett 6:1524–1530

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Liu Z, Liu Y, Li L, Xu Z, Bi B, Wang Y, Li JY (2014) MiR-7-5p is frequently downregulated in glioblastoma microvasculature and inhibits vascular endothelial cell proliferation by targeting RAF1. Tumour Biol 35:10177–10184

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Scientific Foundation of China (No. 81141088), Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (No. 2004BS02010). JL was supported by North Shore-LIJ Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunyan Wang.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Ye, G., Li, J. et al. Recent advance in molecular angiogenesis in glioblastoma: the challenge and hope for anti-angiogenic therapy. Brain Tumor Pathol 32, 229–236 (2015). https://doi.org/10.1007/s10014-015-0233-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-015-0233-5

Keywords

Navigation