Skip to main content
Log in

Extrakorporale Stoßwellentherapie bei Knochenheilungsstörungen

Evidenzbasierte Therapie – Literaturübersicht und eigene Ergebnisse

Extracorporeal shock wave therapy for bony non-union

Evidence-based therapy – Review of the literature and personal results

  • Leitthema
  • Published:
Trauma und Berufskrankheit

Zusammenfassung

Die extrakorporale Stoßwellentherapie (ESWT) wird zunehmend zur Behandlung von Knochen- und Weichteilpathologien eingesetzt. Tierexperimentell wurde die osteogene Potenz der ESWT eindeutig nachgewiesen. Als molekulare Wirkmechanismen werden Zellmembranhyperpolarisierung und Radikalbildung diskutiert, gefolgt von Knochenvorläuferzellstimulation und Wachstumsfaktorexpression. Auch klinisch gibt es deutliche Hinweise auf eine Wirksamkeit der ESWT bei Pseudarthrosen. Es wurden Heilungsraten von 41–89% angegeben, wobei jedoch nur Studien vom Evidenzgrad IV ohne Kontrollgruppe vorliegen. In 601 eigenen prospektiv behandelten Patienten wurde eine Konsolidierungsrate von 83% erreicht. Bisher fehlt ein echter Wirksamkeitsnachweis. Bis dieser durch eine randomisierte und kontrollierte Studie erfolgt ist, muss die Anwendung der ESWT – auch aufgrund der geringen Risiken und Nebenwirkungen und der günstigen Kosten-Nutzen-Relation – auf Basis der besten verfügbaren Evidenz empfohlen werden. Die wissenschaftliche Datenlage zur ESWT ist deutlich fundierter als für die meisten anderen konservativen und operativen Therapieverfahren.

Abstract

Extracorporeal shock wave therapy (ESWT) is applied increasingly in the treatment of bone and soft tissue pathologies. Animal studies have yielded a broad scientific basis supporting the efficacy of ESWT in bone stimulation and also demonstrated its osteogenic potency. Discussion of molecular mechanisms of action has concentrated mainly on cell membrane hyperpolarization and radical production, followed by stimulation of osteoprogenitor cells and expression of growth factors. Clinical studies also indicate that ESWT is effective in the treatment of non-union and healing rates of 41–89% have been observed, but only on the basis of level IV evidence derived from uncontrolled studies. Among 601 patients prospectively treated for non-union, we achieved a consolidation rate of 83%. However, real evidence of its efficacy is still lacking. Until a randomized controlled study provides this ESWT must be recommended on the basis of the best available evidence – not least because of its low-level risks and side effects and positive cost-benefit ratio. More scientific data is available on ESWT than on most other conservative and operative treatment options for patients with bony non-union.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Augat P, Claes L, Suger G (1995) In vivo effect of shock-waves on the healing of fractured bone. Clin Biomech (Bristol, Avon) 10: 374–378

    Google Scholar 

  2. Bailey MR, Blackstock DT, Cleveland RO et al. (1999) Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. II. Cavitation fields. J Acoust Soc Am 106: 1149–1160

    Article  PubMed  Google Scholar 

  3. Barker AT, Dixon RA, Sharrard WJ et al. (1984) Pulsed magnetic field therapy for tibial non-union. Interim results of a double-blind trial. Lancet 1: 994–996

    Article  PubMed  Google Scholar 

  4. Beutler S, Regel G, Pape HC et al. (1999) Die extrakorporale Stoßwellentherapie (ESWT) in der Behandlung von Pseudarthosen des Röhrenknochens. Erste Ergebnisse einer prospektiven klinischen Untersuchung. Unfallchirurg 102: 839–847

    Article  PubMed  Google Scholar 

  5. Bhan S, Mehara AK (1993) Percutaneous bone grafting for nonunion and delayed union of fractures of the tibial shaft. Int Orthop 17: 310–312

    Article  PubMed  Google Scholar 

  6. Biedermann R, Martin A, Handle G et al. (2003) Extracorporeal shock waves in the treatment of nonunions. J Trauma 54: 936–942

    PubMed  Google Scholar 

  7. Birnbaum K, Wirtz DC, Siebert CH et al. (2002) Use of extracorporeal shock-wave therapy (ESWT) in the treatment of non-unions. A review of the literature. Arch Orthop Trauma Surg 122: 324–330

    PubMed  Google Scholar 

  8. Brandner H, Späth K (2001) Extrakorporale Stoßwellentherapie bei Knochenheilungsstörungen. Trauma Berufskrankh [Suppl 2] 3: 253–261

  9. Bürger RA, Witzsch U, Haist J et al. (1992) Extracorporeal shock wave therapy of pesudoarthrosis. J Urol 147: 260A

    Google Scholar 

  10. Chen YJ, Kuo YR, Yang KD et al. (2004) Activation of extracellular signal-regulated kinase (ERK) and p38 kinase in shock wave-promoted bone formation of segmental defect in rats. Bone 34: 466–477

    Article  PubMed  Google Scholar 

  11. Chen YJ, Wurtz T, Wang CJ et al. (2004) Recruitment of mesenchymal stem cells and expression of TGF-beta 1 and VEGF in the early stage of shock wave-promoted bone regeneration of segmental defect in rats. J Orthop Res 22: 526–534

    Article  PubMed  Google Scholar 

  12. Damien CJ, Parsons JR (1991) Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater 2: 187–208

    Article  PubMed  Google Scholar 

  13. Delacretaz G, Rink K, Pittomvils G et al. (1995) Importance of the implosion of ESWL-induced cavitation bubbles. Ultrasound Med Biol 21: 97–103

    Article  PubMed  Google Scholar 

  14. Delius M, Draenert K, Al Diek Y et al. (1995) Biological effects of shock waves: in vivo effect of high energy pulses on rabbit bone. Ultrasound Med Biol 21: 1219–1225

    Article  PubMed  Google Scholar 

  15. Delius M, Ueberle F, Eisenmenger W (1998) Extracorporeal shock waves act by shock wave-gas bubble interaction. Ultrasound Med Biol 24: 1055–1059

    Article  PubMed  Google Scholar 

  16. Diesch R, Haupt G (1997) Anwendung der hochenergetischen extracorporalen Stoßwellentherapie bei Pseudarthrosen. Orthop Prax 33: 470–471

    Google Scholar 

  17. Ekkernkamp A, Bosse A, Haupt G et al. (1992) Der Einfluß der extrakorporalen Stoßwellen auf die standardisierte Tibiafraktur am Schaf. In: Ittel TH, Sieberth H-G (Hrsg) Aktuelle Aspekte der Osteologie. Springer, Berlin Heidelberg New York, S 207–210

  18. Forriol F, Solchaga L, Moreno JL et al. (1994) The effect of shockwaves on mature and healing cortical bone. Int Orthop 18: 325–329

    Article  PubMed  Google Scholar 

  19. Friedlaender GE, Perry CR, Cole JD et al. (2001) Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am [Suppl 1] 83-A: S151–S158

  20. Fritze J (1998) Extrakorporale Stoßwellentherapie (ESWT) in orthopädischer Indikation: Eine ausgewählte Übersicht. Versicherungsmedizin 50: 180–185

    PubMed  Google Scholar 

  21. Gerdesmeyer L, Maier M, Haake M et al. (2002) Physikalisch-technische Grundlagen der extrakorporalen Stoßwellentherapie (ESWT). Orthopade 31: 610–617

    Article  PubMed  Google Scholar 

  22. Gerdesmeyer L, Wagenpfeil S, Haake M et al. (2003) Extracorporeal shock wave therapy for the treatment of chronic calcifying tendonitis of the rotator cuff: a randomized controlled trial. JAMA 290: 2573–2580

    Article  PubMed  Google Scholar 

  23. Gerdesmeyer L, Gollwitzer H, Diehl P et al. (2005) Evidence based medicine and clinical trials in pain practice and orthopedics. Pain Practice 5: 289–297

    Article  Google Scholar 

  24. Gollwitzer H, Gloeck T, Roessner M et al. (2006) Radial extracorporeal shock wave therapy (rESWT) induces bone formation in vivo: results of an animal model in rabbits. 52nd Annual Meeting of the Orthopaedic Research Society, Lakeside Center, McCormick Place, Chicago, IL, USA

  25. Graff J, Pastor J, Richter K-D (1988) Effect of high-energy shock-waves on bony tissue. Urol Res 16: 252

    Google Scholar 

  26. Haist J (1995) Die Osteorestauration mittels Stoßwellenanwendung. Eine neue Möglichkeit zur Therapie der gestörten knöchernen Konsolidierung. In: Chaussy C, Eisenberger F, Jochum D et al. (Hrsg) Die Stoßwelle – Forschung und Klinik. Attempto, Tübingen, S 157–161

  27. Haist J, Reichel W, Bürger RA et al. (1993) Einsatz der extrakorporalen Stoßwelle bei der osteosynthetisch versorgten Pseudarthrose – eine experimentelle Studie. Orthop Prax 5: 345–347

    Google Scholar 

  28. Hammacher ER, Van Meeteren MC, Van der WC (1998) Improved results in treatment of femoral shaft fractures with the unreamed femoral nail? A multicenter experience. J Trauma 45: 517–521

    PubMed  Google Scholar 

  29. Hardy DC, Descamps PY, Krallis P et al. (1998) Use of an intramedullary hip-screw compared with a compression hip-screw with a plate for intertrochanteric femoral fractures. A prospective, randomized study of one hundred patients. J Bone Joint Surg Am 80: 618–630

    PubMed  Google Scholar 

  30. Haupt G, Katzmeier P (1995) Anwendung der hochenergetischen extrakorporalen Stoßwellentherapie bei Pseudarthrosen, Tendinosis calcarea der Schulter und Ansatztendinosen (Fersensporn, Epicondylitis). In: Chaussy C, Eisenberger F, Jochum D et al. (Hrsg) Die Stoßwelle – Forschung und Klinik. Attempto, Tübingen, S 143–146

  31. Haupt G, Haupt A, Ekkernkamp A et al. (1992) Influence of shock waves on fracture healing. Urology 39: 529–532

    Article  PubMed  Google Scholar 

  32. Huber P, Jochle K, Debus J (1998) Influence of shock wave pressure amplitude and pulse repetition frequency on the lifespan, size and number of transient cavities in the field of an electromagnetic lithotripter. Phys Med Biol 43: 3113–3128

    Article  PubMed  Google Scholar 

  33. Johannes EJ, Kaulesar Sukul DM, Matura E (1994) High-energy shock waves for the treatment of nonunions: an experiment on dogs. J Surg Res 57: 246–252

    Article  PubMed  Google Scholar 

  34. Kabak S, Halici M, Tuncel M et al. (2004) Treatment of midclavicular nonunion: comparison of dynamic compression plating and low-contact dynamic compression plating techniques. J Shoulder Elbow Surg 13: 396–403

    Article  PubMed  Google Scholar 

  35. Kaulesar Sukul DM, Johannes EJ, Pierik EG et al. (1993) The effect of high energy shock waves focused on cortical bone: an in vitro study. J Surg Res 54: 46–51

    Article  PubMed  Google Scholar 

  36. Kusnierczak D, Brocai DR, Vettel U et al. (2000) Der Einfluß der extrakorporalen Stoßwellenapplikation (ESWA) auf das biologische Verhalten von Knochenzellen in vitro. Z Orthop Ihre Grenzgeb 138: 29–33

    Article  PubMed  Google Scholar 

  37. Larsen LB, Madsen JE, Hoiness PR et al. (2004) Should insertion of intramedullary nails for tibial fractures be with or without reaming? A prospective, randomized study with 3.8 years‘ follow-up. J Orthop Trauma 18: 144–149

    Article  PubMed  Google Scholar 

  38. Maier M, Milz S, Tischer T et al. (2002) Influence of extracorporeal shock-wave application on normal bone in an animal model in vivo. Scintigraphy, MRI and histopathology. J Bone Joint Surg Br 84: 592–599

    Article  PubMed  Google Scholar 

  39. Maier M, Milz S, Wirtz DC et al. (2002) Grundlagenforschung zur Applikation extrakorporaler Stoßwellen am Stütz- und Bewegungsapparat. Eine Standortbestimmung. Orthopade 31: 667–677

    Article  PubMed  Google Scholar 

  40. Maier M, Averbeck B, Milz S et al. (2003) Substance P and prostaglandin E2 release after shock wave application to the rabbit femur. Clin Orthop Relat Res 406: 237–245

    Article  PubMed  Google Scholar 

  41. Maier M, Freed JA, Milz S et al. (2003) Nachweis von Knochenfragmenten in Lungengefäßen nach hochenergetischer Stoßwellenapplikation am distalen Femur in einem In-vivo-Tiermodell. Z Orthop Ihre Grenzgeb 141: 223–226

    Article  PubMed  Google Scholar 

  42. Maier M, Hausdorf J, Tischer T et al. (2004) Knochenneubildung durch extrakorporale Stoßwellen: Einfluss der Energieflussdichte. Orthopade 33: 1401–1410

    Article  PubMed  Google Scholar 

  43. Marsh D (1998) Concepts of fracture union, delayed union, and nonunion. Clin Orthop Relat Res Suppl 355: 22–30

    Article  Google Scholar 

  44. Muckley T, Schutz T, Srivastava S et al. (2003) Die Technik der tibiotalaren Arthrodese mit Kompressionsmarknagel. Unfallchirurg 106: 732–740

    Article  PubMed  Google Scholar 

  45. Ogden J, Alvarez RG, Cross GL et al. (2005) Plantar fasciopathy and orthotripsy: the effect of prior cortisone injection. Foot Ankle Int 26: 231–233

    PubMed  Google Scholar 

  46. Oni OO, Hui A, Gregg PJ (1988) The healing of closed tibial shaft fractures. The natural history of union with closed treatment. J Bone Joint Surg Br 70: 787–790

    PubMed  Google Scholar 

  47. Ortiguera CJ, Berry DJ (2002) Patellar fracture after total knee arthroplasty. J Bone Joint Surg Am 84-A: 532–540

  48. Pettrone FA, McCall BR (2005) Extracorporeal shock wave therapy without local anesthesia for chronic lateral epicondylitis. J Bone Joint Surg Am 87: 1297–1304

    Article  PubMed  Google Scholar 

  49. Rijnberg WJ, Van Linge B (1993) Central grafting for persistent nonunion of the tibia. A lateral approach to the tibia, creating a central compartment. J Bone Joint Surg Br 75: 926–931

    PubMed  Google Scholar 

  50. Rompe JD, Eysel P, Hopf C et al. (1997) Extrakorporale Stoßwellenapplikation bei gestörter Knochenheilung. Eine kritische Bestandsaufnahme. Unfallchirurg 100: 845–849

    Article  PubMed  Google Scholar 

  51. Rompe JD, Rosendahl T, Schollner C et al. (2001) High-energy extracorporeal shock wave treatment of nonunions. Clin Orthop Relat Res 387: 102–111

    Article  PubMed  Google Scholar 

  52. Russo S, Gigliotti S, De Durante C et al. (1997) Treatment of non union with shock waves with special references to carpal scaphoid nonunion. In: Siebert W, Buch M (Hrsg) Stoßwellenanwendung am Knochen. Dr Kovac, Hamburg, S 40–45

  53. Sarmiento A, Gersten LM, Sobol PA et al. (1989) Tibial shaft fractures treated with functional braces. Experience with 780 fractures. J Bone Joint Surg Br 71: 602–609

    PubMed  Google Scholar 

  54. Schaden W (2000) Extrakorporale Stoßwellentherapie (ESWT) bei Pseudarthrosen und verzögerter Frakturheilung. Trauma Berufskrankh [Suppl 3] 2: 333–339

  55. Schaden W, Fischer A, Sailler A (2001) Extracorporeal shock wave therapy of nonunion or delayed osseous union. Clin Orthop Relat Res 387: 90–94

    Article  PubMed  Google Scholar 

  56. Schleberger R (1995) Anwendung der extrakorporalen Stoßwelle am Stütz- und Bewegungsapparat im mittelenergetischen Bereich. In: Chaussy C, Eisenberger F, Jochum D et al. (Hrsg) Die Stoßwelle – Forschung und Klinik. Attempto, Tübingen, S 166–174

  57. Schleberger R, Senge T (1992) Non-invasive treatment of long-bone pseudarthrosis by shock waves (ESWL). Arch Orthop Trauma Surg 111: 224–227

    Article  PubMed  Google Scholar 

  58. Scott G, King JB (1994) A prospective, double-blind trial of electrical capacitive coupling in the treatment of non-union of long bones. J Bone Joint Surg Am 76: 820–826

    PubMed  Google Scholar 

  59. Seemann O, Rassweiler J, Chvapil M et al. (1992) Effect of low-dose shock wave energy on fracture healing: an experimental study. J Endourol 6: 219–223

    Google Scholar 

  60. Selber P, Filho ER, Dallalana R et al. (2004) Supramalleolar derotation osteotomy of the tibia, with T plate fixation. Technique and results in patients with neuromuscular disease. J Bone Joint Surg Br 86: 1170–1175

    Article  PubMed  Google Scholar 

  61. Simonis RB, Parnell EJ, Ray PS et al. (2003) Electrical treatment of tibial non-union: a prospective, randomised, double-blind trial. Injury 34: 357–362

    Article  PubMed  Google Scholar 

  62. Stürmer KM (1996) Pathophysiologie der gestörten Knochenheilung. Orthopade 25: 386–393

    Article  PubMed  Google Scholar 

  63. Suhr D, Brummer F, Hulser DF (1991) Cavitation-generated free radicals during shock wave exposure: investigations with cell-free solutions and suspended cells. Ultrasound Med Biol 17: 761–768

    Article  PubMed  Google Scholar 

  64. Tscherne H (1996) Pseudarthrosen. Orthopade 25: 385

    Article  PubMed  Google Scholar 

  65. Uslu MM, Bozdogan O, Guney S et al. (1999) The effect of extracorporeal shock wave treatment (ESWT) on bone defects. An experimental study. Bull Hosp Jt Dis 58: 114–118

    PubMed  Google Scholar 

  66. Valchanou VD, Michailov P (1991) High energy shock waves in the treatment of delayed and nonunion of fractures. Int Orthop 15: 181–184

    Article  PubMed  Google Scholar 

  67. Vogel J, Rompe JD, Hopf C et al. (1997) Die hochenergetische extrakorporale Stoßwellentherapie (ESWT) in der Behandlung von Pseudarthrosen. Z Orthop Ihre Grenzgeb 135: 145–149

    PubMed  Google Scholar 

  68. Wang CJ, Chen HS, Chen CE et al. (2001) Treatment of nonunions of long bone fractures with shock waves. Clin Orthop Relat Res 387: 95–101

    Article  PubMed  Google Scholar 

  69. Wang CJ, Huang HY, Chen HH et al. (2001) Effect of shock wave therapy on acute fractures of the tibia: a study in a dog model. Clin Orthop Relat Res 387: 112–118

    Article  PubMed  Google Scholar 

  70. Wang FS, Wang CJ, Huang HJ et al. (2001) Physical shock wave mediates membrane hyperpolarization and Ras activation for osteogenesis in human bone marrow stromal cells. Biochem Biophys Res Commun 287: 648–655

    Article  PubMed  Google Scholar 

  71. Wang FS, Wang CJ, Sheen-Chen SM et al. (2002) Superoxide mediates shock wave induction of ERK-dependent osteogenic transcription factor (CBFA1) and mesenchymal cell differentiation toward osteoprogenitors. J Biol Chem 277: 10.931–10.937

    Google Scholar 

  72. Wang FS, Yang KD, Chen RF et al. (2002) Extracorporeal shock wave promotes growth and differentiation of bone-marrow stromal cells towards osteoprogenitors associated with induction of TGF-beta1. J Bone Joint Surg Br 84: 457–461

    Article  PubMed  Google Scholar 

  73. Wang CJ, Wang FS, Yang KD et al. (2003) Shock wave therapy induces neovascularization at the tendon-bone junction. A study in rabbits. J Orthop Res 21: 984–989

    Article  PubMed  Google Scholar 

  74. Wang FS, Yang KD, Kuo YR et al. (2003) Temporal and spatial expression of bone morphogenetic proteins in extracorporeal shock wave-promoted healing of segmental defect. Bone 32: 387–396

    Article  PubMed  Google Scholar 

  75. Wang CJ, Yang KD, Wang FS et al. (2004) Shock wave treatment shows dose-dependent enhancement of bone mass and bone strength after fracture of the femur. Bone 34: 225–230

    Article  PubMed  Google Scholar 

  76. Wiss DA, Stetson WB (1994) Nonunion of the tibia treated with a reamed intramedullary nail. J Orthop Trauma 8: 189–194

    PubMed  Google Scholar 

  77. Wu CC, Shih CH, Chen WJ et al. (1999) Effect of reaming bone grafting on treating femoral shaft aseptic nonunion after plating. Arch Orthop Trauma Surg 119: 303–307

    Article  PubMed  Google Scholar 

  78. Wu CC, Shih CH, Chen WJ et al. (1999) High success rate with exchange nailing to treat a tibial shaft aseptic nonunion. J Orthop Trauma 13: 33–38

    Article  PubMed  Google Scholar 

  79. Younger EM, Chapman MW (1989) Morbidity at bone graft donor sites. J Orthop Trauma 3: 192–195

    PubMed  Google Scholar 

  80. Zhong P, Cioanta I, Cocks FH et al. (1997) Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy. J Acoust Soc Am 101: 2940–2950

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Gollwitzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gollwitzer, H., Brandner, H. & Gloeck, T. Extrakorporale Stoßwellentherapie bei Knochenheilungsstörungen. Trauma Berufskrankh 8, 142–152 (2006). https://doi.org/10.1007/s10039-006-1158-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10039-006-1158-3

Schlüsselwörter

Keywords

Navigation