Skip to main content

Advertisement

Log in

Optical coherence tomographic parameters as objective signs for visual acuity in patients with retinitis pigmentosa, future candidates for retinal prostheses

  • Original Article
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

An Erratum to this article was published on 22 September 2011

Abstract

To find optical coherence tomographic parameters related with visual acuity, and, thus, which might be used as objective signs to predict visual acuity after future treatment, for example retinal prosthesis implantation, 86 eyes of 45 consecutive patients with retinitis pigmentosa, who showed no macular diseases, underwent optical coherence tomography to measure macular retinal thickness and peripapillary retinal nerve fiber layer (RNFL) thickness, and to obtain horizontal cross-sectional images at the fovea for observation of the inner segment/outer segment (IS/OS) junction line. Best-corrected visual acuity was significantly better either in the right eyes or in the left eyes with greater retinal thickness of all four quadrants of the macular area in the inner ring, encompassing 1–3 mm from the foveal center (P < 0.05, Spearman rank correlation test), and also with the presence of the IS/OS line at the fovea (P < 0.0001, Wilcoxon–Kruskal–Wallis rank sum test). Retinal average thickness in the posterior pole covering the 6 × 6 mm square area was positively correlated with peripapillary RNFL average thickness either in the right eyes or in the left eyes (P < 0.05). The average thickness of the peripapillary RNFL became significantly less with age (P < 0.05), but was not related with visual acuity. Macular retinal thickness and the presence of the IS/OS line, but not peripapillary RNFL thickness, could serve as objective signs for better visual acuity in retinitis pigmentosa. The macular retinal thickness might be used as an objective predictor to choose patients with retinitis pigmentosa who would be expected to gain vision after retinal prosthesis implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Flannery JG, Farber DB, Bird AC, Bok D. Degenerative changes in a retina affected with autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 1989;30:191–211.

    PubMed  CAS  Google Scholar 

  2. Weiland JD, Liu W, Humayun MS. Retinal prosthesis. Annu Rev Biomed Eng. 2005;7:361–401.

    Article  PubMed  CAS  Google Scholar 

  3. Winter JO, Cogan SF, Rizzo JF 3rd. Retinal prostheses: current challenges and future outlook. J Biomater Sci Polym Ed. 2007;18:1031–55.

    Article  PubMed  CAS  Google Scholar 

  4. Chader GJ, Weiland J, Humayun MS. Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis. Prog Brain Res. 2009;175:317–32.

    Article  PubMed  Google Scholar 

  5. Matsuo T, Uchida T, Takarabe K. Safety, efficacy, and quality control of a photoelectric dye-based retinal prosthesis (Okayama University-type retinal prosthesis) as a medical device. J Artif Organs. 2009;12:213–25.

    Article  PubMed  Google Scholar 

  6. Matsuo T. A simple method for screening photoelectric dyes towards their use for retinal prostheses. Acta Med Okayama. 2003;57:257–60.

    PubMed  CAS  Google Scholar 

  7. Uji A, Matsuo T, Ishimaru S, Kajiura A, Shimamura K, Ohtsuki H, Dan-oh Y, Suga S. Photoelectric dye-coupled polyethylene film as a prototype of retinal prostheses. Artif Organs. 2005;29:53–7.

    Article  PubMed  CAS  Google Scholar 

  8. Uji A, Matsuo T, Uchida T, Shimamura K, Ohtsuki H. Intracellular calcium response and adhesiveness of chick embryonic retinal neurons to photoelectric dye-coupled polyethylene films as prototypes of retinal prostheses. Artif Organs. 2006;30:695–703.

    Article  PubMed  CAS  Google Scholar 

  9. Tamaki T, Matsuo T, Hosoya O, Tsutsui KM, Uchida T, Okamoto K, Uji A, Ohtsuki H. Glial reaction to photoelectric dye-based retinal prostheses implanted in the subretinal space of rats. J Artif Organs. 2008;11:38–44.

    Article  PubMed  CAS  Google Scholar 

  10. Okamoto K, Matsuo T, Tamaki T, Uji A, Ohtsuki H. Short-term biological safety of a photoelectric dye used as a component of retinal prostheses. J Artif Organs. 2008;11:45–51.

    Article  PubMed  CAS  Google Scholar 

  11. Ko Witkin AJ, TH Fijimoto JG, Chan A, Drexler W, Schuman JS, Reichel E, Duker JS. Ultra-high resolution optical coherence tomography assessment of photoreceptors in retinitis pigmentosa and related diseases. Am J Ophthalmol. 2006;142:945–52.

    Article  PubMed  Google Scholar 

  12. Matsuo T, Morimoto N. Visual acuity and perimacular retinal layers detected by optical coherence tomography in patients with retinitis pigmentosa. Br J Ophthalmol. 2007;91:888–90.

    Article  PubMed  Google Scholar 

  13. Berson EL. Retinitis pigmentosa. The Friedenwald Lecture. Invest Ophthalmol Vis Sci. 1993;34:1659–76.

    PubMed  CAS  Google Scholar 

  14. Sandberg MA, Brockhurst RJ, Gaudio AR, Berson EL. Visual acuity is related to parafoveal retinal thickness in patients with retinitis pigmentosa and macular cysts. Invest Ophthalmol Vis Sci. 2008;49:4568–72.

    Article  PubMed  Google Scholar 

  15. Baba T, Yamamoto S, Arai M, Arai E, Sugawara T, Mitamura Y, Mizunoya S. Correlation of visual recovery and presence of photoreceptor inner/outer segment junction in optical coherence images after successful macular hole repair. Retina. 2008;28:453–8.

    Article  PubMed  Google Scholar 

  16. Sano M, Shimoda Y, Hashimoto H, Kishi S. Restored photoreceptor outer segment and visual recovery after macular hole closure. Am J Ophthalmol. 2009;147:313–8.

    Article  PubMed  Google Scholar 

  17. Ojima Y, Hangai M, Sasahara M, Gotoh N, Inoue R, Yasuno Y, Makita S, Yatagai T, Tsujikawa A, Yoshimura N. Three-dimensional imaging of the foveal photoreceptor layer in central serous chorioretinopathy using high-speed optical coherence tomography. Ophthalmology. 2007;114:2197–207.

    Article  PubMed  Google Scholar 

  18. Matsumoto H, Sato T, Kishi S. Outer nuclear layer thickness at the fovea determines visual outcomes in resolved central serous chorioretinopathy. Am J Ophthalmol. 2009;148:105–10.

    Article  PubMed  Google Scholar 

  19. Sugita T, Kondo M, Piao CH, Ito Y, Terasaki H. Correlation between macular volume and focal macular electroretinogram in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2008;49:3551–8.

    Article  PubMed  Google Scholar 

  20. Aizawa S, Mitamura Y, Baba T, Hagiwara A, Ogata K, Yamamoto S. Correlation between visual function and photoreceptor inner/outer segment junction in patients with retinitis pigmentosa. Eye (Lond). 2009;23:304–8.

    CAS  Google Scholar 

  21. Walia S, Fishman GA, Edward DP, Lindeman M. Retinal nerve fiber layer defects in RP patients. Invest Ophthalmol Vis Sci. 2007;48:4748–52.

    Article  PubMed  Google Scholar 

  22. Walia S, Fishman GA. Retinal nerve fiber layer analysis in RP patients using Fourier-domain OCT. Invest Ophthalmol Vis Sci. 2008;49:3525–8.

    Article  PubMed  Google Scholar 

  23. Hood DC, Lin CE, Lazow MA, Locke KG, Zhang X, Birch DG. Thickness of receptor and post-receptor retinal layers in patients with retinitis pigmentosa measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2009;50:2328–36.

    Article  PubMed  Google Scholar 

  24. Medeiros FA, Zangwill LM, Alencar LM, Bowd C, Sample PA, Susanna R Jr, Weinreb RN. Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. Invest Ophthalmol Vis Sci. 2009;50:5741–8.

    Article  PubMed  Google Scholar 

  25. Eriksson U, Alm A. Macular thickness decreases with age in normal eyes: a study on the macular thickness map protocol in the Stratus OCT. Br J Ophthalmol. 2009;93:1448–52.

    Article  PubMed  CAS  Google Scholar 

  26. Ooto S, Hangai M, Sakamoto A, Tomidokoro A, Araie M, Otani T, Kishi S, Matsushita K, Maeda N, Shirakashi M, Abe H, Takeda H, Sugiyama K, Saito H, Iwase A, Yoshimura N. Three-dimensional profile of macular retinal thickness in normal Japanese eyes. Invest Ophthalmol Vis Sci. 2010;51:465–73.

    Article  PubMed  Google Scholar 

  27. Sung KR, Wollstein G, Bilonick RA, Townsend KA, Ishikawa H, Kagemann L, Noecker RJ, Fujimoto JG, Schuman JS. Effects of age on optical coherence tomography measurements of healthy retinal nerve fiber layer, macula, and optic nerve head. Ophthalmology. 2009;116:1119–24.

    Article  PubMed  Google Scholar 

  28. Harwerth RS, Wheat JL, Rangaswamy NV. Age-related losses of retinal ganglion cells and axons. Invest Ophthalmol Vis Sci. 2008;49:4437–43.

    Article  PubMed  Google Scholar 

  29. Kanno M, Nagasawa M, Suzuki M, Yamashita H. Peripapillary retinal nerve fiber layer thickness in normal Japanese eyes measured with optical coherence tomography. Jpn J Ophthalmol. 2010;54:36–42.

    Article  PubMed  Google Scholar 

  30. Sung KR, Kim DY, Park SB, Kook MS. Comparison of retinal nerve fiber layer thickness measured by Cirrus HD and Stratus optical coherence tomography. Ophthalmology. 2009;116:1264–70.

    Article  PubMed  Google Scholar 

  31. Leung CK, Cheung CY, Weinreb RN, Qiu Q, Liu S, Li H, Xu G, Fan N, Huang L, Pang CP, Lam DSC. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography. A variability and diagnostic performance study. Ophthalmology. 2009;116:1257–63.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Matsuo.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10047-011-0597-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamaki, M., Matsuo, T. Optical coherence tomographic parameters as objective signs for visual acuity in patients with retinitis pigmentosa, future candidates for retinal prostheses. J Artif Organs 14, 140–150 (2011). https://doi.org/10.1007/s10047-011-0557-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-011-0557-9

Keywords

Navigation