Skip to main content
Erschienen in: Journal of Artificial Organs 4/2015

01.12.2015 | Original Article

In vitro hydrodynamic evaluation of a biovalve with stent (tubular leaflet type) for transcatheter pulmonary valve implantation

verfasst von: Hirohito Sumikura, Yasuhide Nakayama, Kentaro Ohnuma, Satoru Kishimoto, Yoshiaki Takewa, Eisuke Tatsumi

Erschienen in: Journal of Artificial Organs | Ausgabe 4/2015

Einloggen, um Zugang zu erhalten

Abstract

We have been developing an autologous heart valve-shaped tissue with a stent (stent-biovalve) for transcatheter pulmonary valve implantation (TPVI) using “in-body tissue architecture” technology. In this study, the hydrodynamic performance of a stent-biovalve with tubular leaflets was evaluated by changing its leaflet height in an in vitro test in order to determine the appropriate stent-biovalve form for the pulmonary valve. A specially designed, self-expandable, stent-mounted, cylindrical acrylic mold was placed in a dorsal subcutaneous pouch of goat, and the implant was extracted 2 months later. Only the cylindrical acrylic mold was removed from the implant, and a tubular hollow structure of membranous connective tissue impregnated with the stent strut was obtained. Half of tubular tissue was completely folded in half inwards, and 3 commissure parts were connected to form 3 leaflets, resulting in the preparation of a stent-biovalve with tubular leaflets (25-mm ID). The stent-biovalve with adjusting leaflet height (13, 14, 15, 17, 20, and 25 mm) was fixed to a specially designed pulsatile mock circulation circuit under pulmonary valve conditions using 37 °C saline. The mean pressure difference and effective orifice area were better than those of the biological valve. The lowest and highest leaflet heights had a high regurgitation rate due to lack of coaptation or prevention of leaflet movement, respectively. The lowest regurgitation (ca. 11 %) was observed at a height of 15 mm. The leaflet height was found to significantly affect the hydrodynamics of stent-biovalves, and the existence of an appropriate leaflet height became clear.
Literatur
1.
Zurück zum Zitat Tokunaga S, Tominaga R. Artificial valves “up to date” in Japan. J Artif Organs. 2010;13:77–87.CrossRefPubMed Tokunaga S, Tominaga R. Artificial valves “up to date” in Japan. J Artif Organs. 2010;13:77–87.CrossRefPubMed
2.
Zurück zum Zitat Cribier A, Eltchaninoff H, Bash A, Borenstein N, Tron C, Bauer F, Derumeaux G, Anselme F, Laborde F, Leon MB. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation. 2002;106:3006–8.CrossRefPubMed Cribier A, Eltchaninoff H, Bash A, Borenstein N, Tron C, Bauer F, Derumeaux G, Anselme F, Laborde F, Leon MB. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation. 2002;106:3006–8.CrossRefPubMed
3.
Zurück zum Zitat Bonhoeffer P, Boudjemline Y, Saliba Z, Merckx J, Aggoun Y, Bonnet D, Acar P, Le Bidois J, Sidi D, Kachaner J. Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet. 2000;356:1403–5.CrossRefPubMed Bonhoeffer P, Boudjemline Y, Saliba Z, Merckx J, Aggoun Y, Bonnet D, Acar P, Le Bidois J, Sidi D, Kachaner J. Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet. 2000;356:1403–5.CrossRefPubMed
4.
Zurück zum Zitat Huang PH, Eisenhauer AC. Transcatheter aortic valve replacement using the Edwards SAPIEN transcatheter heart valves. Cardiol Clin. 2013;31:337–50.CrossRefPubMed Huang PH, Eisenhauer AC. Transcatheter aortic valve replacement using the Edwards SAPIEN transcatheter heart valves. Cardiol Clin. 2013;31:337–50.CrossRefPubMed
5.
Zurück zum Zitat Grube E, Schuler G, Buellesfeld L, Gerckens U, Linke A, Wenaweser P, Sauren B, Mohr FW, Walther T, Zickmann B, Iversen S, Felderhoff T, Cartier R, Bonan R. Percutaneous aortic valve replacement for severe aortic stenosis in high-risk patients using the second- and current third-generation self-expanding CoreValve prosthesis: device success and 30-day clinical outcome. J Am Coll Cardiol. 2007;50:69–76.CrossRefPubMed Grube E, Schuler G, Buellesfeld L, Gerckens U, Linke A, Wenaweser P, Sauren B, Mohr FW, Walther T, Zickmann B, Iversen S, Felderhoff T, Cartier R, Bonan R. Percutaneous aortic valve replacement for severe aortic stenosis in high-risk patients using the second- and current third-generation self-expanding CoreValve prosthesis: device success and 30-day clinical outcome. J Am Coll Cardiol. 2007;50:69–76.CrossRefPubMed
6.
Zurück zum Zitat Nakayama Y, Takewa Y, Sumikura H, Yamanami M, Matsui Y, Oie T, Kishimoto Y, Arakawa M, Ohnuma K, Tajikawa T, Kanda K, Tatsumi E. In-body tissue-engineered aortic valve (Biovalve type VII) architecture based on 3D printer molding. J Biomed Mater Res B Appl Biomater. 2015;103:1–11.CrossRefPubMed Nakayama Y, Takewa Y, Sumikura H, Yamanami M, Matsui Y, Oie T, Kishimoto Y, Arakawa M, Ohnuma K, Tajikawa T, Kanda K, Tatsumi E. In-body tissue-engineered aortic valve (Biovalve type VII) architecture based on 3D printer molding. J Biomed Mater Res B Appl Biomater. 2015;103:1–11.CrossRefPubMed
7.
Zurück zum Zitat Yamanami M, Yahata Y, Uechi M, Fujiwara M, Ishibashi-Ueda H, Kanda K, Watanabe T, Tajikawa T, Ohba K, Yaku H, Nakayama Y. Development of a completely autologous valved conduit with the sinus of Valsalva using in-body tissue architecture technology: a pilot study in pulmonary valve replacement in a beagle model. Circulation. 2010;122:S100–6.CrossRefPubMed Yamanami M, Yahata Y, Uechi M, Fujiwara M, Ishibashi-Ueda H, Kanda K, Watanabe T, Tajikawa T, Ohba K, Yaku H, Nakayama Y. Development of a completely autologous valved conduit with the sinus of Valsalva using in-body tissue architecture technology: a pilot study in pulmonary valve replacement in a beagle model. Circulation. 2010;122:S100–6.CrossRefPubMed
8.
Zurück zum Zitat Takewa Y, Yamanami M, Kishimoto Y, Arakawa M, Kanda K, Matsui Y, Oie T, Ishibashi-Ueda H, Tajikawa T, Ohba K, Yaku H, Taenaka Y, Tatsumi E, Nakayama Y. In vivo evaluation of an in-body, tissue-engineered, completely autologous valved conduit (biovalve type VI) as an aortic valve in a goat model. J Artif Organs. 2013;16:176–84.CrossRefPubMed Takewa Y, Yamanami M, Kishimoto Y, Arakawa M, Kanda K, Matsui Y, Oie T, Ishibashi-Ueda H, Tajikawa T, Ohba K, Yaku H, Taenaka Y, Tatsumi E, Nakayama Y. In vivo evaluation of an in-body, tissue-engineered, completely autologous valved conduit (biovalve type VI) as an aortic valve in a goat model. J Artif Organs. 2013;16:176–84.CrossRefPubMed
9.
Zurück zum Zitat Sumikura H, Nakayama Y, Ohnuma K, Takewa Y, Tatsumi E. In vitro evaluation of a novel autologous aortic valve (biovalve) with a pulsatile circulation circuit. Artif Organs. 2014;38:282–9.CrossRefPubMed Sumikura H, Nakayama Y, Ohnuma K, Takewa Y, Tatsumi E. In vitro evaluation of a novel autologous aortic valve (biovalve) with a pulsatile circulation circuit. Artif Organs. 2014;38:282–9.CrossRefPubMed
10.
Zurück zum Zitat Funayama M, Sumikura H, Takewa Y, Tatsumi E, Nakayama Y. Development of self-expanding valved stents with autologous tubular leaflet tissues for transcatheter valve implantation. J Artif Organs. 2015. doi:10.1007/s10047-015-0820-6. Funayama M, Sumikura H, Takewa Y, Tatsumi E, Nakayama Y. Development of self-expanding valved stents with autologous tubular leaflet tissues for transcatheter valve implantation. J Artif Organs. 2015. doi:10.​1007/​s10047-015-0820-6.
11.
Zurück zum Zitat Mizuno T, Takewa Y, Sumikura H, Ohnuma K, Moriwaki T, Yamanami M, Oie T, Tatsumi E, Uechi M, Nakayama Y. Preparation of an autologous heart valve with a stent (stent-biovalve) using the stent eversion method. J Biomed Mater Res B Appl Biomater. 2014;102:1038–45.CrossRefPubMed Mizuno T, Takewa Y, Sumikura H, Ohnuma K, Moriwaki T, Yamanami M, Oie T, Tatsumi E, Uechi M, Nakayama Y. Preparation of an autologous heart valve with a stent (stent-biovalve) using the stent eversion method. J Biomed Mater Res B Appl Biomater. 2014;102:1038–45.CrossRefPubMed
12.
Zurück zum Zitat Kishimoto S, Takewa Y, Nakayama Y, Date K, Sumikura H, Moriwaki T, Nishimura M, Tatsumi E. Sutureless aortic valve replacement using a novel autologous tissue heart valve with stent (stent biovalve): proof of concept. J Artif Organs. 2015;18:185–90. Kishimoto S, Takewa Y, Nakayama Y, Date K, Sumikura H, Moriwaki T, Nishimura M, Tatsumi E. Sutureless aortic valve replacement using a novel autologous tissue heart valve with stent (stent biovalve): proof of concept. J Artif Organs. 2015;18:185–90.
13.
Zurück zum Zitat Sumikura H, Homma A, Ohnuma K, Taenaka Y, Takewa Y, Mukaibayashi H, Katano K, Tatsumi E. Development and evaluation of endurance test system for ventricular assist devices. J Artif Organs. 2013;16:138–48.CrossRefPubMed Sumikura H, Homma A, Ohnuma K, Taenaka Y, Takewa Y, Mukaibayashi H, Katano K, Tatsumi E. Development and evaluation of endurance test system for ventricular assist devices. J Artif Organs. 2013;16:138–48.CrossRefPubMed
14.
Zurück zum Zitat Cardiovascular implants—cardiac valve prostheses, ISO 5840:2005(E). Cardiovascular implants—cardiac valve prostheses, ISO 5840:2005(E).
15.
Zurück zum Zitat Rahmani B, Tzamtzis S, Ghanbari H, Burriesci G, Seifalian AM. Manufacturing and hydrodynamic assessment of a novel aortic valve made of a new nanocomposite polymer. J Biomech. 2012;45:1205–11.CrossRefPubMed Rahmani B, Tzamtzis S, Ghanbari H, Burriesci G, Seifalian AM. Manufacturing and hydrodynamic assessment of a novel aortic valve made of a new nanocomposite polymer. J Biomech. 2012;45:1205–11.CrossRefPubMed
Metadaten
Titel
In vitro hydrodynamic evaluation of a biovalve with stent (tubular leaflet type) for transcatheter pulmonary valve implantation
verfasst von
Hirohito Sumikura
Yasuhide Nakayama
Kentaro Ohnuma
Satoru Kishimoto
Yoshiaki Takewa
Eisuke Tatsumi
Publikationsdatum
01.12.2015
Verlag
Springer Japan
Erschienen in
Journal of Artificial Organs / Ausgabe 4/2015
Print ISSN: 1434-7229
Elektronische ISSN: 1619-0904
DOI
https://doi.org/10.1007/s10047-015-0851-z

Weitere Artikel der Ausgabe 4/2015

Journal of Artificial Organs 4/2015 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.