Skip to main content
Erschienen in: Journal of Artificial Organs 2/2016

15.10.2015 | Original Article

In situ cross-linked electrospun fiber scaffold of collagen for fabricating cell-dense muscle tissue

verfasst von: Naoya Takeda, Kenichi Tamura, Ryo Mineguchi, Yumiko Ishikawa, Yuji Haraguchi, Tatsuya Shimizu, Yusuke Hara

Erschienen in: Journal of Artificial Organs | Ausgabe 2/2016

Einloggen, um Zugang zu erhalten

Abstract

Engineered muscle tissues used as transplant tissues in regenerative medicine should have a three-dimensional and cell-dense structure like native tissue. For fabricating a 3D cell-dense muscle tissue from myoblasts, we proposed the electrospun type I collagen microfiber scaffold of the string-shape like a harp. The microfibers were oriented in the same direction to allow the myoblasts to align, and were strung at low density with micrometer intervals to create space for the cells to occupy. To realize this shape of the scaffold, we employed in situ cross-linking during electrospinning process for the first time to collagen fibers. The collagen microfibers in situ cross-linked with glutaraldehyde stably existed in the aqueous media and completely retained the original shape to save the spaces between the fibers for over 14 days. On the contrary, the conventional cross-linking method by exposure to a glutaraldehyde aqueous solution vapor partially dissolved and damaged the fiber to lose a low-density shape of the scaffold. Myoblasts could penetrate into the interior of the in situ cross-linked string-shaped scaffold and form the cell-dense muscle tissues. Histochemical analysis showed the total area occupied by the cells in the cross section of the tissue was approximately 73 %. Furthermore, the resulting muscle tissue fabricated from primary myoblasts showed typical sarcomeric cross-striations and the entire tissue continuously pulsated by autonomous contraction. Together with the in situ cross-linking, the string-shaped scaffold provides an efficient methodology to fabricate a cell-dense 3D muscle tissue, which could be applied in regenerative medicine in future.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Carpenter S, Karpati G. Pathology of skeletal muscle. 2nd ed. Oxford: Oxford University Press; 2001. Carpenter S, Karpati G. Pathology of skeletal muscle. 2nd ed. Oxford: Oxford University Press; 2001.
2.
Zurück zum Zitat Walton J. Disorders of voluntary muscle. New York: Churchill Livingstone; 1988. Walton J. Disorders of voluntary muscle. New York: Churchill Livingstone; 1988.
3.
Zurück zum Zitat Huang NF, et al. Myotube assembly on nanofibrous and micropatterned polymers. Nano Lett. 2006;6:537–42.CrossRefPubMed Huang NF, et al. Myotube assembly on nanofibrous and micropatterned polymers. Nano Lett. 2006;6:537–42.CrossRefPubMed
4.
Zurück zum Zitat Shimizu K, et al. Alignment of skeletal muscle myoblasts and myotubes using linear micropatterned surfaces ground with abrasives. Biotech Bioeng. 2009;103:631–8.CrossRef Shimizu K, et al. Alignment of skeletal muscle myoblasts and myotubes using linear micropatterned surfaces ground with abrasives. Biotech Bioeng. 2009;103:631–8.CrossRef
5.
Zurück zum Zitat Gingras J, et al. Controlling the orientation and synaptic differentiation of myotubes with micropatterned substrates. Biophys J. 2009;97:2771–9.CrossRefPubMedPubMedCentral Gingras J, et al. Controlling the orientation and synaptic differentiation of myotubes with micropatterned substrates. Biophys J. 2009;97:2771–9.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Okano T, et al. Tissue engineering of skeletal muscle, highly dense, highly oriented hybrid muscular tissues biomimicking native tissues. ASAIO J. 1997;43:M749–53.CrossRefPubMed Okano T, et al. Tissue engineering of skeletal muscle, highly dense, highly oriented hybrid muscular tissues biomimicking native tissues. ASAIO J. 1997;43:M749–53.CrossRefPubMed
7.
Zurück zum Zitat Eschenhagen T, et al. Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J. 1997;11:683–4.PubMed Eschenhagen T, et al. Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J. 1997;11:683–4.PubMed
8.
Zurück zum Zitat Xu CY, et al. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials. 2004;25:877–86.CrossRefPubMed Xu CY, et al. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials. 2004;25:877–86.CrossRefPubMed
9.
Zurück zum Zitat Yang F, et al. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005;26:2603–10.CrossRefPubMed Yang F, et al. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005;26:2603–10.CrossRefPubMed
10.
Zurück zum Zitat Baumgarten PK. Electrostatic spinning of acrylic microfibers. J Colloid Interface Sci. 1971;36:71–9.CrossRef Baumgarten PK. Electrostatic spinning of acrylic microfibers. J Colloid Interface Sci. 1971;36:71–9.CrossRef
11.
Zurück zum Zitat Li D, et al. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv Mater. 2004;16:361–6.CrossRef Li D, et al. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv Mater. 2004;16:361–6.CrossRef
12.
Zurück zum Zitat Ricotti1 L, et al. Proliferation and skeletal myotube formation capability of C2C12 and H9c2 cells on isotropic and anisotropic electrospun nanofibrous PHB scaffolds. Biomed Mater. 2012;7:032010. Ricotti1 L, et al. Proliferation and skeletal myotube formation capability of C2C12 and H9c2 cells on isotropic and anisotropic electrospun nanofibrous PHB scaffolds. Biomed Mater. 2012;7:032010.
13.
Zurück zum Zitat Riboldi SA, et al. Skeletal myogenesis on highly orientated microfibrous polyesterurethane scaffolds. J Biomed Mater Res A. 2008;84:1094–101.CrossRefPubMed Riboldi SA, et al. Skeletal myogenesis on highly orientated microfibrous polyesterurethane scaffolds. J Biomed Mater Res A. 2008;84:1094–101.CrossRefPubMed
14.
Zurück zum Zitat Ishikawa H, et al. Surface and internal morphology of skeletal muscle. In: Peachey LD, Adrian RH, Geiger SR, editors. Handbook of physiology, section 10: skeletal muscle. Philadelphia: Williams & Wilkins; 1983. p. 1–21. Ishikawa H, et al. Surface and internal morphology of skeletal muscle. In: Peachey LD, Adrian RH, Geiger SR, editors. Handbook of physiology, section 10: skeletal muscle. Philadelphia: Williams & Wilkins; 1983. p. 1–21.
15.
Zurück zum Zitat Matthews JA, et al. Electrospinning of collagen nanofibers. Biomacromolecules. 2002;3:232–8.CrossRefPubMed Matthews JA, et al. Electrospinning of collagen nanofibers. Biomacromolecules. 2002;3:232–8.CrossRefPubMed
16.
Zurück zum Zitat Fujita H, et al. Fabrication of scaffold-free contractile skeletal muscle tissue using magnetite-incorporated myogenic C2C12 cells. J Tissue Eng Regen Med. 2008;4:437–43. Fujita H, et al. Fabrication of scaffold-free contractile skeletal muscle tissue using magnetite-incorporated myogenic C2C12 cells. J Tissue Eng Regen Med. 2008;4:437–43.
17.
Zurück zum Zitat Rho KS, et al. Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials. 2006;27:1452–61.CrossRefPubMed Rho KS, et al. Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials. 2006;27:1452–61.CrossRefPubMed
18.
Zurück zum Zitat Migneault I, et al. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques. 2004;37:790–802.PubMed Migneault I, et al. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques. 2004;37:790–802.PubMed
19.
Zurück zum Zitat Marui A, et al. A novel approach to therapeutic angiogenesis for patients with critical limb ischemia by sustained release of basic fibroblast growth factor using biodegradable gelatin hydrogel: an initial report of the phase I-IIa study. Circ J. 2007;71:1181–6.CrossRefPubMed Marui A, et al. A novel approach to therapeutic angiogenesis for patients with critical limb ischemia by sustained release of basic fibroblast growth factor using biodegradable gelatin hydrogel: an initial report of the phase I-IIa study. Circ J. 2007;71:1181–6.CrossRefPubMed
20.
Zurück zum Zitat Nakashima T, et al. Study on preparation and application of nanofiber (II). Research Report of Industrial Technology Center Gifu Prefectural Government. 2011;5:42–5. Nakashima T, et al. Study on preparation and application of nanofiber (II). Research Report of Industrial Technology Center Gifu Prefectural Government. 2011;5:42–5.
21.
Zurück zum Zitat Tang C, et al. In situ cross-linking of electrospun poly(vinyl alcohol) nanofibers. Macromol. 2010;43:630–7.CrossRef Tang C, et al. In situ cross-linking of electrospun poly(vinyl alcohol) nanofibers. Macromol. 2010;43:630–7.CrossRef
22.
Zurück zum Zitat Yang E, et al. Electrospun crosslinked polyvinyl alcohol membrane. Mater Lett. 2008;62:3555–7.CrossRef Yang E, et al. Electrospun crosslinked polyvinyl alcohol membrane. Mater Lett. 2008;62:3555–7.CrossRef
23.
Zurück zum Zitat Ribeiro N, et al. A biocomposite of collagen nanofibers and nanohydroxyapatite for bone regeneration. Biofabrication. 2014;6:035015.CrossRefPubMed Ribeiro N, et al. A biocomposite of collagen nanofibers and nanohydroxyapatite for bone regeneration. Biofabrication. 2014;6:035015.CrossRefPubMed
24.
Zurück zum Zitat Han B, et al. Proanthocyanidin: a natural crosslinking reagent for stabilizing collagen matrices. J Biomed Mater Res A. 2003;65:118–24.CrossRefPubMed Han B, et al. Proanthocyanidin: a natural crosslinking reagent for stabilizing collagen matrices. J Biomed Mater Res A. 2003;65:118–24.CrossRefPubMed
25.
Zurück zum Zitat Yang L, et al. Mechanical properties of single electrospun collagen type I fibers. Biomaterials. 2008;29:955–62.CrossRefPubMed Yang L, et al. Mechanical properties of single electrospun collagen type I fibers. Biomaterials. 2008;29:955–62.CrossRefPubMed
26.
Zurück zum Zitat Mori H, et al. Dynamic viscoelastic properties of collagen gels in the presence and absence of collagen fibrils. Mater Sci Eng C. 2012;32:2007–16.CrossRef Mori H, et al. Dynamic viscoelastic properties of collagen gels in the presence and absence of collagen fibrils. Mater Sci Eng C. 2012;32:2007–16.CrossRef
27.
Zurück zum Zitat Yamamoto M, et al. Identification of integrins involved in cell adhesion to native and denatured type I collagens and the phenotypic transition of rabbit arterial smooth muscle cells. Exp Cell Res. 1995;219:249–56.CrossRefPubMed Yamamoto M, et al. Identification of integrins involved in cell adhesion to native and denatured type I collagens and the phenotypic transition of rabbit arterial smooth muscle cells. Exp Cell Res. 1995;219:249–56.CrossRefPubMed
29.
Zurück zum Zitat DeVore DT. Collagen xenografts for bone replacement: The effect of aldehyde-induced cross-linking on degradation rate. In: Shira RB, editor. Oral Surg Oral Med Oral Pathol. MO: C.V. Mosby; 1977. p. 677–86. DeVore DT. Collagen xenografts for bone replacement: The effect of aldehyde-induced cross-linking on degradation rate. In: Shira RB, editor. Oral Surg Oral Med Oral Pathol. MO: C.V. Mosby; 1977. p. 677–86.
30.
Zurück zum Zitat Morimoto Y, et al. Three-dimensional neuron-muscle constructs with neuromuscular junctions. Biomaterials. 2013;34:9413–9.CrossRefPubMed Morimoto Y, et al. Three-dimensional neuron-muscle constructs with neuromuscular junctions. Biomaterials. 2013;34:9413–9.CrossRefPubMed
31.
Zurück zum Zitat Allen DL, et al. Growth factor stimulation of matrix metalloproteinase expression and myoblast migration and invasion in vitro. Am J Physiol Cell Physiol. 2003;284:C805–15.CrossRefPubMed Allen DL, et al. Growth factor stimulation of matrix metalloproteinase expression and myoblast migration and invasion in vitro. Am J Physiol Cell Physiol. 2003;284:C805–15.CrossRefPubMed
32.
Zurück zum Zitat El Fahime E, et al. In vivo migration of transplanted myoblasts requires matrix metalloproteinase activity. Exp Cell Res. 2000;258:279–87.CrossRefPubMed El Fahime E, et al. In vivo migration of transplanted myoblasts requires matrix metalloproteinase activity. Exp Cell Res. 2000;258:279–87.CrossRefPubMed
34.
Zurück zum Zitat Schnell E, et al. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone blend. Biomaterials. 2007;28:3012–25.CrossRefPubMed Schnell E, et al. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone blend. Biomaterials. 2007;28:3012–25.CrossRefPubMed
Metadaten
Titel
In situ cross-linked electrospun fiber scaffold of collagen for fabricating cell-dense muscle tissue
verfasst von
Naoya Takeda
Kenichi Tamura
Ryo Mineguchi
Yumiko Ishikawa
Yuji Haraguchi
Tatsuya Shimizu
Yusuke Hara
Publikationsdatum
15.10.2015
Verlag
Springer Japan
Erschienen in
Journal of Artificial Organs / Ausgabe 2/2016
Print ISSN: 1434-7229
Elektronische ISSN: 1619-0904
DOI
https://doi.org/10.1007/s10047-015-0871-8

Weitere Artikel der Ausgabe 2/2016

Journal of Artificial Organs 2/2016 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.