Skip to main content
Erschienen in: neurogenetics 4/2015

Open Access 01.10.2015 | Review article

Splicing: is there an alternative contribution to Parkinson’s disease?

verfasst von: Valentina La Cognata, Velia D’Agata, Francesca Cavalcanti, Sebastiano Cavallaro

Erschienen in: Neurogenetics | Ausgabe 4/2015

Abstract

Alternative splicing is a crucial mechanism of gene expression regulation that enormously increases the coding potential of our genome and represents an intermediate step between messenger RNA (mRNA) transcription and protein posttranslational modifications. Alternative splicing occupies a central position in the development and functions of the nervous system. Therefore, its deregulation frequently leads to several neurological human disorders. In the present review, we provide an updated overview on the impact of alternative splicing in Parkinson’s disease (PD), the second most common neurodegenerative disorder worldwide. We will describe the alternative splicing of major PD-linked genes by collecting the current evidences about this intricate and not carefully explored aspect. Assessing the role of this mechanism on PD pathobiology may represent a central step toward an improved understanding of this complex disease.

Introduction

The flow of genetic information from DNA to RNA to protein has traditionally been considered the central dogma of molecular biology. Additional steps of regulation are currently well known, greatly expanding this simplistic framework and revealing the complex network that controls gene expression [1]. One of these steps is represented by alternative splicing (AS), whereby a single gene gives rise to multiple messenger RNA (mRNA) transcripts and protein isoforms with different functional properties [1]. It is estimated that 94 % of human protein-coding genes are alternatively spliced [2, 3], and the main site of alternative splicing events is the central nervous system [4, 5].
The alternative splicing process consists in the removal of the intronic regions from the RNA primary transcript and simultaneous assembly of the exonic regions in different combinations to form a mature mRNA, which is then polyadenilated, exported to the cytoplasm, and translated into protein. The accuracy and efficiency of pre-mRNA splicing process depend on a range of constitutive DNA sequence motifs: the donor and the acceptor splice sites, the lariat branch point, the polypyrimidine tract, and splicing enhancers and silencers (Fig. 1, panel a). These motifs are recognized by a large macromolecular splicing machinery (called the spliceosome), which models the pre-mRNA while RNA polymerase II synthesizes it in the nucleus. The splicing machinery includes five spliceosomal uridine-rich small nuclear ribonucleoproteins (snRNPs) (U1, U2, U4, U5, and U6) and several non-snRNP protein splicing factors such as the serine/arginine (SR)-rich protein family and hnRNP proteins [6, 7]. The splicing reaction relies on two transesterification steps that occur within the highly dynamic splicing machine. The stepwise molecular mechanisms of the splicing reaction are detailed in Fig. 1 (panel a).
Alternative splicing works as an on–off switch in gene expression. It affects the expression levels, stability, half-life [via the nonsense-mediated mRNA decay (NMD)], and localization of the RNA messengers. It has also the potential to generate several protein isoforms with different biological properties, protein–protein interactions, subcellular localization, signaling pathway, or catalytic ability. During the last years, great efforts have been made to decipher the intricate alternative splicing code. Five major alternative splicing events (i.e., cassette exons, use of alternative acceptor and/or donor sites, intron retention, and mutually exclusive exons) have been described up to now and are detailed in Fig. 1 (panel b) [2, 8]. However, how the spliceosome recognizes alternative exons and decides which exons to include remains not fully understood. Undoubtedly, there is more diversity in splice transcript variants than in protein isoforms. Although this is still not clear, different variants encode the same protein, but probably translate it with different efficiencies [9].
The finely tuned splicing regulatory network can easily undergo alterations. An aberrant alternative splicing may arise from changes in regulatory sequences required for correct pre-mRNA processing (the so-called cis-acting mutations), as well as from mutations that affect components necessary for splicing regulation (trans-acting mutations). Cis- and trans-splicing aberrations represent direct causative agents of disease or more subtle contributions to the determinants of disease susceptibility or modulators of disease severity. An extensive range of neurological diseases has been already associated to both splicing defects, including Alzheimer’s disease, retinitis pigmentosa, spinal muscular atrophy, muscular dystrophy, neurofibromatosis, and fragile X-associated tremor/ataxia syndrome [1012, 1, 13]. In this broad neurological disorder scenario, the relevance of alternative splicing in Parkinson’s disease (PD) is not still clear, and the splicing mechanisms that regulate PD-related genes remain mostly unknown.
Here, we provide an updated overview of the current knowledge about the impact of alternative splicing on Parkinson’s disease. Firstly, we will take into account the most common PD-related genes “one by one” by analyzing their alternative transcripts currently known and their involvement in this disease. Then, we will describe the few studies that have globally analyzed the changes of splice variant expression in PD patients through genome-wide RNA expression approaches. Finally, we will briefly describe the current evidences about the alternative splicing modulation in PD through noncoding RNAs [microRNA (miRNA) and long noncoding RNA (lcnRNA)].

Genetics of Parkinson’s disease

PD is the second most common neurodegenerative disorder worldwide, characterized by resting tremor, bradykinesia, stiffness of movement, and postural instability. These symptoms are derived from the progressive loss of neurons from the substantia nigra pars compacta, coupled with an accumulation of intraneuronal aggregates called Lewy bodies.
Despite significant progresses in the understanding of PD pathogenesis, the exact etiology of PD remains unknown. Over the past 15 years, an even more detailed knowledge of the genetic factors that contribute to PD has emerged through different research strategies [14, 15]. Linkage mapping analysis, genome-wide association studies (GWAS), and next-generation sequencing technologies are revealing an increasing number of locus and genes strongly linked to either autosomal dominant (SNCA-PARK1, LRRK2-PARK8, VPS35-PARK17, and GBA), or typical recessive (PARKIN-PARK2, PINK1-PARK6, and DJ1-PARK7) and atypical recessive (ATP13A2-PARK9, PLA2G6-PARK14, and FBXO7-PARK15) or X-linked (ATP6A2 and TAF1) forms of disease. For the sake of completeness, we mention here further monogenic loci, not confirmed genes, or risk factor genes (i.e., PARK3, UCHL1, PARK10, GIGYF2, PARK12, HTRA2, PARK16, EIF4G1, DNAJ, HLA-DR, GAK-DGKQ, SYNJ1, and GBAP1) [1517]. Furthermore, a large-scale meta-analysis of genome-wide association data is revealing a wide range of additional loci having genome-wide significant association [18]. However, we will overlook their discussion because of the few data in the literature regarding their splicing regulation in pathological conditions.
In the next paragraphs, we will describe the alternative spliced mRNA variants of PD genes and the current scientific data demonstrating their involvement in PD pathogenesis. For a more complete picture, we have also added some further implicated genes (SRRM2, MAO-B, SNCAIP, MAPT, and GBA), indicated as other PD-related genes, which are not directly causative genes, but whose splicing regulation seems to be altered in PD states.

Autosomal dominant PD genes

SNCA

Alpha-synuclein, encoded by SNCA gene, is a small, natively unfolded presynaptic protein linked to PD [19]. Aggregates of alpha-synuclein protein represent the neuropathological hallmark lesions of PD and constitute the major components of Lewy bodies. Genetically, mutations in SNCA gene were the first to be associated with PD family inheritance. Missense mutations in coding regions (Ala53Thr, Ala30Pro, and Glu46Lys), single nucleotide substitution in 3′ untranslated region (3′ UTR), and dose-dependent genomic multiplications (duplications or triplications) of the gene cause both monogenic and sporadic forms of PD [20, 19, 21]. Some point mutations in splice donor sites have also been reported (IVS2 + 9A > C) [22].
SNCA gene maps to chromosome 4q22.1 and contains six exons spanning about 114 kb [21]. The set of mRNAs produced by SNCA gene includes the full-length transcript, commonly known as SNCA-140 from the amino acidic length of the encoded protein, and corresponds to SNCA-001, SNCA-002, SNCA-003, SNCA-006, and SNCA-008 mRNAs from Ensembl library (Table 1 and Fig. 2). Further additional splicing variants, known as SNCA-126, SNCA-112, and SNCA-98 and corresponding to (i) SNCA-004, SNCA-203, SNCA-201, (ii) SNCA-005, SNCA-202, and (iii) SNCA-010, respectively, are generated by in-frame excision of exons 3, 5, or both (Table 1 and Fig. 2). Two additional splice variants (SNCA-009 and SNCA-007) are generated from an inner transcription start and encode proteins of 115 and 97 amino acids, respectively (Table 1 and Fig. 2). SNCA-140, SNCA-126, and SNCA-112 are expressed in a broad spectrum of human tissues, while SNCA-98 seems to be a brain-specific splice variant with varying expression levels in different areas of fetal and adult brain [23].
Table 1
Alternative splice variants of human autosomal dominant PD genes
Gene name
Transcript number
Ensembl name
Genbank accession number
Protein length
SNCA
1.
SNCA-003
NM_001146055
140 aa
2.
SNCA-202
NM_007308
112 aa
3.
SNCA-203
126 aa
4.
SNCA-201
126 aa
5.
SNCA-005
112 aa
6.
SNCA-001
NM_001146054
140 aa
7.
SNCA-002
NM_000345
140 aa
8.
SNCA-008
140 aa
9.
SNCA-006
140 aa
10.
SNCA-004
126 aa
11.
SNCA-010
98 aa
12.
SNCA-009
115 aa
13.
SNCA-007
67 aa
LRRK2
1.
LRRK2-002
1271 aa
2.
LRRK2-004
NM_198578
2527 aa
3.
LRRK2-005
207 aa
4.
LRRK2-001
521 aa
5.
LRRK2-003
No protein
6.
LRRK2-006
No protein
7.
LRRK2-007
No protein
VPS35
1.
VPS35-001
NM_018206
796 aa
2.
VPS35-002
48 aa
3.
VPS35-011
No protein
4.
VPS35-012
No protein
5.
VPS35-006
No protein
6.
VPS35-003
No protein
7.
VPS35-010
No protein
8.
VPS35-005
47 aa
9.
VPS35-008
41 aa
10.
VPS35-007
No protein
11.
VPS35-004
No protein
Gene name, Ensembl transcript names, GenBank accession numbers, and relative encoded amino acidic protein length of splice variants are reported in the table. Number in the column “Transcript number” identifies the transcript in Fig. 2
The expression profile of SNCA-140, SNCA-126, SNCA-112, and SNCA-98 splice variants is different in the various brain areas under normal and pathological states. Compared to healthy controls, in PD frontal cortex, all these four transcripts are overexpressed, with significant upregulation of SNCA-126 [24]. In PD substantia nigra, only the three shorter transcripts have been observed significantly overexpressed [25, 26], while higher SNCA-112 and SNCA-98 levels are also present in the cerebellum [25]. Different expression profiles of SNCA variants also occur in other forms of neurodegenerative disorders. Both SNCA-140 and SNCA-126 downregulation and SNCA-98 overexpression have been reported in dementia with Lewy bodies and Alzheimer’s disease, while SNCA-112 is upregulated in dementia with Lewy bodies and downregulated in Alzheimer’s disease [27, 28, 24].
Some interesting data emerge on SNCA-112 variant. An association between PD risk-associated single nucleotide polymorphisms (SNPs) within the 3′ region of SNCA gene and higher SNCA-112 ratio level has been observed in about 100 of frontal cortex samples. These data reveal the cis-regulatory effect of these mutations on splicing mechanism [29]. The expression of SNCA-112 is also abundantly induced by some parkinsonism mimetics (MPP+, rotenone) and related oxidants [30]. However, the reason for these effects remains unclear.
In addition to splice variants, specific RNA transcript isoforms of SNCA with an extended 3′ untranslated region have been described and appear selectively linked to pathological processes [31]. However, this review is focusing only on the mRNA splice variants; thus, their discussion will be omitted.
The 140 amino acid isoform is a small protein with a molecular weight of 14.5 kDa. It is composed of three distinct regions: (1) an amino terminus containing amphipathic helices conferring the propensity to bind membranes; (2) a central hydrophobic region, the so-called non-Ab component (NAC), which confers the b-sheet potential; and (3) an acid glutamatergic carboxyl terminus that is highly negatively charged and prone to be unstructured [19]. Structural changes in the shorter splicing isoforms can be predicted as a result of exon skipping events. SNCA-126-predicted isoform shows interruption of the N-terminal protein–membrane interaction domain [32]; SNCA-112 is significantly shorter in the unstructured C-terminal [32], while SNCA-98 isoform results in a truncated protein consisting almost only of the central region containing NAC [23]. Recently, a lower aggregation propensity of the shorter isoforms has been demonstrated in vitro [33]. In addition, morphology studies by using electron microscopy have shown straight fibrils for SNCA-140, shorter fibrils mostly arranged in parallel arrays for SNCA-126, and circular structures for SNCA-98 [33]. These data open new insights regarding the formation of Lewy bodies induced by alpha-synuclein.
Numerous functions of alpha-synuclein have been proposed, counting molecular chaperone, regulator of dopamine uptake and homeostasis, inhibitor of phospholipase D2, downregulator of p53 pathway [32], and promoter of the SNARE-complex assembling [34]. Unfortunately, nothing is known about the specific pathophysiological roles of each alpha-synuclein isoform and their relative posttranslational modifications (i.e., phosphorylations, nitration, sumoylation, oxidation, glycosylation, cleavage, and ubiquitination), which are known to play a key role in SNCA functions and regulation [32].

LRRK2

LRRK2 encodes for leucine-rich repeat kinase 2 (or dardarin), which is a large 2527 amino acid multidomain protein. The protein consists of multiple conserved well-defined domains including a small GTPase-like domain (Ras of complex proteins or ROC), a domain of unknown function termed the C-terminal of ROC (COR), a kinase domain, as well as several protein interaction domains [e.g., the leucine-rich repeat (LRR), the WD40 domain, the ankyrin repeat domain, and the armadillo repeat region]. The precise physiological function of LRRK2 is unknown. However, LRRK2 seems implicated in different cellular functions as neurite outgrowth, cytoskeletal maintenance, vesicle trafficking, and autophagic protein degradation [35].
The LRRK2 gene spans a genomic region of 144 kb, with 51 exons, and harbors the most common mutations linked to both autosomal dominant inherited late-onset and sporadic PD. The missense mutations known so far are spread over the whole LRRK2 gene and affect all functional domains. Some mutations have much higher frequencies than others, such as Gly2019Ser and mutations altering codon Arg1441, respectively, in the kinase and ROC domains. In addition, several unclear pathogenic mutations affecting splice sites have been observed (IVS19 + 5_8delGTAA, IVS25-8delT, IVS27-9C > T, IVS30-6C > T, IVS31 + 3A > G, IVS32 + 14G > A, IVS33 + 6 T > A, IVS37-9A > G, IVS38 + 7C > T, IVS46-14 T > A, and IVS46-8delT) [36, 22, 3743].
In addition to the full-length transcript (LRRK2-004), further LRRK2 shorter transcripts are deposited in Ensembl library (Table 1 and Fig. 2). Despite the existence of these transcripts, there are currently no data analyzing the splicing profile of this gene in PD states. Recently, a gene expression and splicing analysis of the LRRK2 locus have been carried on [44]. Both exon array and RT-PCR methods confirm the existence of an isoform with spliced out exons 32–33 in the substantia nigra and an isoform with exon 32 alone spliced out in the occipital cortex, medulla, and cerebellum of healthy humans [44].
Further evidences on LRRK2 splicing have been observed by Giesert and collaborators [45], who have conducted a study in various brain regions and organs from adult mice. In this regard, it should be considered that LRRK2 is highly conserved in human and mouse and that several transgenic animal models have been created. Giesert et al. [45] have identified two LRRK2 splice variants: one with skipped exon 5, primarily expressed in astrocytes, and another truncated variant terminating with an alternative exon 42a barely detectable in the microglia but highly expressed in neurons and astrocytes. Protein-structure predictions reveal that the loss of exon 5 may generate a smaller protein with changed affinity of binding partners, while the alternative exon 42a may lead to changes of its enzymatic activity. In addition, the protein-interaction domain WD40 would also be absent in such truncation. Interestingly, the deletion of this domain in the Zebrafish LRRK2 ortholog (zLRRK2) causes parkinsonism-like phenotype including loss of dopaminergic neurons in diencephalon and locomotion defects [46]. Further studies will need to assess the involvement of LRRK2 alternative splice variants in PD.

VPS35

In 2011, two groups reported the identification of the same missense mutation (p.Asp620Asn) in the vacuolar protein sorting 35 (VPS35) gene as a novel cause of autosomal dominant PD [47, 48]. VPS35 was the first PD gene found by a direct whole exome sequencing in large families of Austrian and Swiss origins. An in-depth sequence analyses of all coding, noncoding, and exon–intron boundaries VPS35 genetic regions have been performed in a large well-characterized cohort of Lewy body disorders, including PD patients, PD with dementia, and dementia with Lewy bodies [49]. In addition to three novel missense mutations, silent and intronic variations, predicted to activate cryptic splice sites, have been observed in the patient’s group but not in controls. However, the pathogenicity of these mutations was not completely conclusive since these mutations were not supported by segregation analysis in family relatives [49].
Various spliced transcript variants of this gene are reported in Ensembl library (Table 1 and Fig. 2), but the majority of them are processed for degradation and do not encode proteins.

Autosomal recessive PD genes

Early-onset typical PD genes

PARK2
Mutations in PARK2 gene (also known as PARK2 parkin RBR E3 ubiquitin-protein ligase) are the most common cause (50 % of cases) of autosomal recessive juvenile parkinsonism (AR-JP), a form of early-onset parkinsonism characterized by good and prolonged response to levodopa and a benign, slow course. PARK2 mutations also explain ~15 % of the sporadic cases with onset before 45 [50, 51] and act as susceptibility alleles for late-onset forms of Parkinson’s disease (2 % of cases) [52]. Along with about 200 mutations currently identified in PARK2 coding region, several point mutations in splice acceptor or donor sites (introns 1, 6, 7, 10, 12, 13, and 16) have been identified in PD patients [5357, 22, 58, 59].
PARK2 gene spans more than 1.38 Mb of genomic DNA in the long arm of chromosome 6 (6q25.2–q27) and contains 12 exons, which are alternatively spliced to produce at least 11 different splicing variants (Table 2 and Fig. 3) [59]. The full-length PARK2 transcript (PARK2-004) encodes a protein of 465 amino acids (parkin) [60, 61, 59] acting in numerous molecular pathways (protein turnover, stress response, mitochondrial homeostasis, mitophagy, mitochondrial DNA stability, metabolism, cell growth, and survival) [62]. Multiple parkin isoforms likely arising from PARK2 splicing variants have been observed in different brain areas through Western blot studies [9].
Table 2
Alternative splice variants of human autosomal recessive PD genes
Gene name
Transcript number
Ensembl name
Genbank accession number
Protein length
PARK2
1.
PARK2-004
NM_004562
465 aa
2.
PARK2-005
NM_013987
437 aa
3.
PARK2-006
NM_013988
316 aa
4.
PARK2-001
274 aa
5.
PARK2-003
274 aa
6.
PARK2-007
218 aa
7.
PARK2-201
176 aa
8.
PARK2-204
87 aa
9.
PARK2-002
368 aa
10.
PARK2-202
74 aa
11.
PARK2-203
201 aa
PINK1
1.
PINK1-001
NM_032409
581 aa
2.
PINK1-002
No protein
3.
PINK1-003
No protein
DJ1
1.
PARK7-004
189 aa
2.
PARK7-002
NM_001123377; NM_007262
189 aa
3.
PARK7-007
No protein
4.
PARK7-001
189 aa
5.
PARK7-003
169 aa
6.
PARK7-008
No protein
7.
PARK7-005
189 aa
8.
PARK7-006
189 aa
9.
PARK7-009
No protein
10.
PARK7-010
160 aa
ATP13A2
1.
ATP13A2-001
NM_022089
1180 aa
2.
ATP13A2-002
NM_001141974
1158 aa
3.
ATP13A2-005
NM_001141973
1175 aa
4.
ATP13A2-004
No protein
5.
ATP13A2-003
No protein
6.
ATP13A2-010
191 aa
7.
ATP13A2-007
398 aa
8.
ATP13A2-014
258 aa
9.
ATP13A2-009
321 aa
10.
ATP13A2-006
No protein
11.
ATP13A2-201
228 aa
12.
ATP13A2-013
No protein
13.
ATP13A2-011
190 aa
14.
ATP13A2-012
191 aa
15.
ATP13A2-008
188 aa
PLA2G6
1.
PLA2G6-001
NM_003560
806 aa
2.
PLA2G6-201
NM_001004426
752 aa
3.
PLA2G6-002
NM_001199562
752 aa
4.
PLA2G6-025
No protein
5.
PLA2G6-021
No protein
6.
PLA2G6-014
166 aa
7.
PLA2G6-024
No protein
8.
PLA2G6-013
No protein
9.
PLA2G6-026
168 aa
10.
PLA2G6-015
120 aa
11.
PLA2G6-010
99 aa
12.
PLA2G6-023
226 aa
13.
PLA2G6-009
No protein
14.
PLA2G6-027
51 aa
15.
PLA2G6-022
No protein
16.
PLA2G6-012
151 aa
17.
PLA2G6-019
124 aa
18.
PLA2G6-011
No protein
19.
PLA2G6-020
No protein
20.
PLA2G6-008
No protein
21.
PLA2G6-016
229 aa
22.
PLA2G6-005
99 aa
23.
PLA2G6-018
157 aa
24.
PLA2G6-003
99 aa
25.
PLA2G6-017
197 aa
26.
PLA2G6-007
80 aa
27.
PLA2G6-004
No protein
28.
PLA2G6-006
No protein
FBXO7
1.
FBXO7-003
41 aa
2.
FBXO7-001
NM_012179
522 aa
3.
FBXO7-004
49 aa
4.
FBXO7-005
No protein
5.
FBXO7-006
129 aa
6.
FBXO7-002
NM_001033024; NM_001257990
408 aa
7.
FBXO7-007
54 aa
8.
FBXO7-008
No protein
9.
FBXO7-010
No protein
Gene name, Ensembl transcript names, GenBank accession numbers, and relative encoded amino acidic protein length of splice variants are reported in the table. Number in the column “Transcript number” identifies the transcript in Fig. 3
The extensive alternative splicing of PARK2 is differently regulated both at transcript and protein level in tissues and cells [63, 64, 24, 6568]. Distinct expression patterns of PARK2 splice variants emerge in human brain regions [69] and leukocytes [68], in rat brain, in neuronal and glial cells [67], and in a wide variety of mouse tissues (brain, heart, lung, liver, skeletal muscle, kidney, and testis) [64]. At the protein level, PARK2 protein isoforms show a differential distribution in human leukocytes [70] and aged brain [71], as well as in different rat and mouse nervous system areas (cerebral cortex/diencephalons, hippocampus, cerebellum, brainstem, striatum, spinal cord, and substantia nigra), peripheral tissues (heart, liver, spleen, pancreas, and kidney), and developmental stages [7276].
Emerging evidences support the importance of PARK2 splice variant expression changes in disease development. Differential expression of PARK2 transcripts have been identified in the frontal cortex of Parkinson’s disease, pure dementia with Lewy bodies, common Lewy body disease, and Alzheimer’s disease patients, compared to controls [65, 24]. Particularly, two PARK2 splicing variants are significantly overexpressed in PD [65]. Another study reports both an increase in the expression level of a parkin splice variant and a decrease of the wild type between PD patients and healthy controls [66]. The differential and disease-specific expression profiles of PARK2 alternative splice variants suggest a role for splicing deregulation in the development of neurodegenerative disorders.
PINK1
Homozygous or compound heterozygous loss-of-function mutations in PTEN-induced putative kinase 1 (PINK1) are the second most frequent cause of autosomal recessive early-onset parkinsonism. Mutation frequency varies geographically from 1 to 9 % depending on ethnic background [77]. The PINK1 mutation spectrum involves nonsense and missense mutations, insertions, or deletions, and whole gene or single/multiple exon copy number variants located across the entire gene [78].
PINK1 gene maps in the short arm of chromosome 1 (1p36.12), encompassing ~18 kb of genomic DNA. Its coding sequence is spread over eight exons. In addition to the full length (PINK1-001), two shorter variants exist but do not produce proteins (Table 2 and Fig. 3).
Some interesting findings emerge regarding the splicing regulation of exon 7. A 23-bp deletion disrupting the splice acceptor site of exon 7 has been detected in a sporadic parkinsonian patient, producing several aberrant mRNAs [79]. Moreover, whole exon 7 deletion and a novel U1-dependent 5′ splice-site mutation in exon 7 have been found in a large Spanish family with PD members [80].
The PINK1 protein is a putative serine/threonine kinase of 581 amino acids involved in mitochondrial response to cellular and oxidative stress [81]. It has been demonstrated that at least two isoforms are expressed in the human brain: a full-length protein of ~63 kDa and an N-terminally truncated isoform of 52 kDa [77, 8284]. An additional isoform of approximately 45 kDa has been suggested, although it has not been extensively studied [85]. The 52-kDa isoform seems to originate by enzymatic cleavage of PARL [86]; however, the exact nature of the isoforms, the precise reason for the cleavage, and the functional roles of these three different isoforms require further studies.
DJ1
Mutations in the DJ1 (also known as PARK7) gene are the less common cause of autosomal recessive parkinsonism (~1 % of early-onset PD) [87, 88]. A large homozygous deletion and a missense mutation (L166P) in DJ-1 gene were first identified in both Italian and Dutch consanguineous families [89, 90]. Additional mutations have been collected in other PD families and include missense mutations in coding and promoter regions, frame shifts, copy number variations [91, 88], and splice site alterations [92, 93].
DJ-1 gene maps to chromosome 1 (1p36.23) and includes seven exons. Several spliced transcript variants have been identified encoding the same protein (Table 2 and Fig. 3). Two shorter transcripts (the first lacking exon 4 and the second starting in an inner transcription point) encode for smaller proteins (Table 2 and Fig. 3).
The product of DJ-1 gene is a highly conserved protein of 189 amino acids belonging to the peptidase C56 family [94]. It is a multifunctional protein, acting as a positive regulator of transcription, redox-sensitive chaperone, sensor for oxidative stress, and apparently protects neurons from ROS-induced apoptosis [95, 96]. In the human brain and peripheral blood, several DJ-1 isoforms exist and differ on their isoelectric point (pI) [97100]. The relative abundance of these different DJ-1 isoforms appears to be altered in PD, and therefore, blood DJ-1 isoforms have been proposed as potential biomarkers for Parkinson’s disease [101]. The different pI of each variant are believed to result from posttranslational modifications that alter the intrinsic charge of the protein [101]. Interestingly, it has been demonstrated that one of the major binding partners of DJ-1 in dopaminergic neuronal cells is the splicing factor proline/glutamine-rich (SFPQ protein) [96, 102]. SFPQ, originally identified as a polypyrimidine tract-binding protein, is part of the spliceosome C complex and is required for in vitro splicing of pre-mRNA [96, 102]. DJ-1 binding to SFPQ modulates its transcriptional activity and, therefore, tunes its effect on splicing regulation. DJ-1 mutations could reverberate on its downstream targets, including the splicing factor SFPQ and altering the splicing control.

Juvenile atypical PD genes

ATP13A2
ATP13A2 mutations are associated with Kufor–Rakeb syndrome, a form of recessively levodopa-responsive inherited atypical parkinsonism [103]. It encodes a large protein belonging to the ATPase transmembrane transporters, and recently, it has been identified as a potent modifier of the toxicity induced by alpha-synuclein [104].
ATP13A2 is composed of 29 exons and lies on chromosome 1 covering about 26 kb of genomic DNA. One of the first identified disease-causing mutations was a guanine-to-adenine transition in the donor splice site of exon 13, leading to the skipping of exon 13 and resulting in a deletion of part of the third transmembrane domain [105].
According to data repositories, at least 15 alternatively spliced transcripts are expressed in humans (Table 2 and Fig. 3). The longest transcripts are ATP13A2-001, ATP13A2-002, and ATP13A2-005. Transcript variants ATP13A2-001 and ATP13A2-005 differ only in a nucleotide segment on exon 5, while transcript variant ATP13A2-002 lacks exons 22 and 28. The ATP13A2 mRNA is highly expressed in the brain, particularly in the substantia nigra of patients with classical late-onset PD [91]. However, nothing is known about the splicing expression profiles of this gene in PD and healthy subjects.
The products of these transcripts have been studied at the protein level. The isoform 1 encoded by ATP13A2-001 is a protein of 1180 amino acids with ten transmembrane domains. Isoform 2 encoded by ATP13A2-005 contains a five amino acid deletion near the N-terminus, while isoform 3, encoded by ATP13A2-002, contains two deletions, generating a highly diverged C-terminus [105]. Functional studies have shown that the isoform 1 is located in the lysosome membrane, whereas the isoform 3 protein is retained in the endoplasmic reticulum and rapidly degraded by the proteasome. In addition, both isoforms 1 and 3 are eliminated via the endoplasmic reticulum-associated degradation pathway [105].
PLA2G6
Recessive mutations in the phospholipase A2 group VI (PLA2G6) gene have been initially described as the cause of infantile neuroaxonal dystrophy and neurodegeneration associated with brain iron accumulation. Recently, this gene has also been associated with a particular parkinsonian phenotype, consisting of levodopa-responsive dystonia, pyramidal signs, and cognitive/psychiatric features, with onset in early adulthood [106]. Among PLA2G6 identified mutations, the c.1077G > A mutation at the last nucleotide of exon 7 (apparently a synonymous mutation) stands out as a cause of abnormal mRNA splicing. This single nucleotide substitution causes the activation of a cryptic splice site producing a 4-bp deleted transcript with altered frame shift in leukocytes [106].
PLA2G6 gene maps on chromosome 22 (q13.1), covering 70 kb of genomic DNA. Several transcript variants encoding multiple isoforms have been described up to now (Table 2 and Fig. 3). The longest PLA2G6 mRNA PLA2G6-001 includes 17 exonic regions and encodes the 85/88 kDa calcium-independent phospholipase known as A2 isoform a. The other two long transcripts (PLA2G6-002 and PLA2G6-201) differ in the start point, both lack of exon 9 and encode the same protein, called isoform b. The expression profile of this gene in healthy and disease states remains unknown.
FBXO7
Mutations in the F-box only protein 7 (FBXO7) gene cause parkinsonian pyramidal disease (PPD- or PARK15-associated parkinsonism), an autosomal recessive neurodegenerative disease with juvenile onset, severe levodopa-response, and additional pyramidal signs. Some pathogenic mutations have been identified (R378G, R498X, and T22M) including a compound heterozygous mutation (IVS7 + 1G/T) that removes the invariable splice donor of intron 7 and may disrupt FBXO7 messenger RNA splicing [107109].
The FBXO7 gene, mapped on chromosome 22q12.3, contains nine exons spanning about 24.1 kb. It encodes a 522 amino acid protein consisting of several domains [108], which target proteins for ubiquitination [108]. Alternatively spliced transcript variants of this gene have been identified (Table 2 and Fig. 3) [107]. FBXO7-001 is the longest and more abundant transcript ubiquitously expressed [110], particularly in skin fibroblasts [111]. FBXO7-002 arises from an inner alternative exon 1, differs in the start codon, and produces a shorter isoform. Both these encoded protein isoforms have been detected in cells [111].

X-linked parkinsonism

X-linked dystonia parkinsonism (XDP) is an X-linked recessive adult-onset movement disorder characterized by both dystonia and parkinsonism. TATA-box binding protein-associated factor 1 (TAF1) gene, located in the disease locus Xq13.1, has been reported as the first related XPD gene, harboring disease-specific single-nucleotide changes and a small deletion within the multiple transcript panel [112]. This gene is part of a complex region of DNA (the TAF1/DYT3 multiple transcript systems), which encompasses the exonic regions of TAF1 gene and further additional downstream exons [112, 113]. This system includes multiple different transcription start sites and encodes multiple spliced transcripts and isoforms (Table 3 and Fig. 4) [112].
Table 3
Alternative splice variants of human X-linked PD genes
Gene name
Transcript number
Ensembl name
Genbank accession number
Protein length
TAF1
1.
TAF1-201
NM_001286074
1895 aa
2.
TAF1-009
NM_138923
1872 aa
3.
TAF1-008
NM_004606
1893 aa
4.
TAF1-014
458 aa
5.
TAF1-010
490 aa
6.
TAF1-021
No protein
7.
TAF1-011
No protein
8.
TAF1-013
No protein
9.
TAF1-012
No protein
10.
TAF1-015
No protein
11.
TAF1-018
No protein
12.
TAF1-016
No protein
13.
TAF1-022
No protein
14.
TAF1-023
No protein
15.
TAF1-005
No protein
16.
TAF1-006
No protein
17.
TAF1-020
No protein
18.
TAF1-019
No protein
19.
TAF1-017
279 aa
20.
TAF1-007
150 aa
ATP6AP2
1.
ATP6AP2-004
NM_005765
350 aa
2.
ATP6AP2-007
203 aa
3.
ATP6AP2-005
No protein
4.
ATP6AP2-006
243 aa
5.
ATP6AP2-001
259 aa
6.
ATP6AP2-003
No protein
7.
ATP6AP2-002
No protein
Gene name, Ensembl transcript names, GenBank accession numbers, and relative encoded amino acidic protein length of splice variants are reported in the table. The number in the column “Transcript number” identifies the transcript in Fig. 4
Recently, the ATP6AP2 gene (Table 3 and Fig. 4) has been proposed as a novel gene for X-linked parkinsonism with spasticity (XPDS) by exome sequencing analysis [114]. A silent mutation (p.S115S) in the ATP6AP2 gene has been identified in one affected individual, resulting in the aberrant splicing of ATP6AP2 mRNA and the overexpression of a minor splice isoform [114]. Noteworthy, the ATP6AP2 is an essential accessory component of the vacuolar ATPase required for lysosomal degradative functions and autophagy, a pathway frequently affected in PD.

SNCAIP

Synphilin-1, encoded by SNCAIP gene, is a presynaptic protein containing several protein–protein interaction motifs, including ankyrin-like repeats, a coiled-coil domain, and an ATP/GTP-binding domain [115]. It interacts strongly with alpha-synuclein in neuronal tissue and may play a role in the formation of Lewy bodies during neurodegeneration. It is also implicated in parkinsonism as one of the parkin substrates. In addition, some studies have identified SNCAIP sequence variants in PD patients and have suggested it as a candidate PD gene [116, 117].
SNCAIP gene maps on chromosome 5 (5q23.2) and spans about 152 kb of genomic DNA. Although the database Gene reports SNCAIP composed of 11 exons, additional exonic regions emerge by aligning the sequence of the gene with each transcript. To date, at least 22 alternative spliced transcript variants have been identified (Table 4 and Fig. 5), but the most studied are synphilin-1 and 1A. Synphilin-1 (SNCAIP-001) is the full-length transcript, while synphilin-1A variant is a shorter form (SNCAIP-201). The latter lacks exons 4 and 5 and contains an extra exon located between exons 10 and 11. Synphilin-1A isoform is thought to be involved in the pathogenesis of PD and may play an important role in the formation of Lewy bodies [118120]. Interestingly, synphilin-1A protein shows enhanced aggregation properties, which cause neuronal toxicity [118120].
Table 4
Alternative splice variants of other human PD-related genes
Gene name
Transcript number
Ensembl name
Genbank accession number
Protein length
SNCAIP
1.
SNCAIP-019
135 aa
2.
SNCAIP-003
66 aa
3.
SNCAIP-016
161 aa
4.
SNCAIP-017
98 aa
5.
SNCAIP-010
858 aa
6.
SNCAIP-001
NM_005460
919 aa
7.
SNCAIP-204
113 aa
8.
SNCAIP-201
NM_001242935
603 aa
9.
SNCAIP-004
66 aa
10.
SNCAIP-018
68 aa
11.
SNCAIP-002
1016 aa
12.
SNCAIP-006
62 aa
13.
SNCAIP-005
No protein
14.
SNCAIP-007
66 aa
15.
SNCAIP-203
88 aa
16.
SNCAIP-202
62 aa
17.
SNCAIP-012
66 aa
18.
SNCAIP-011
88 aa
19.
SNCAIP-009
588 aa
20.
SNCAIP-008
113 aa
21.
SNCAIP-015
14 aa
22.
SNCAIP-013
No protein
MAO-B
1.
MAOB-001
NM_000898
520 aa
2.
MAOB-002
No protein
3.
MAOB-004
No protein
GBA
1.
GBA-011
No protein
2.
GBA-001
NM_000157
536 aa
3.
GBA-002
NM_001005741; NM_001005742
536 aa
4.
GBA-003
No protein
5.
GBA-009
No protein
6.
GBA-015
NM_001171812
487 aa
7.
GBA-016
NM_001171811
449 aa
8.
GBA-005
No protein
9.
GBA-012
No protein
10.
GBA-006
No protein
11.
GBA-010
No protein
12.
GBA-014
No protein
13.
GBA-007
No protein
14.
GBA-013
No protein
MAPT
1.
MAPT-204
NM_005910
441 aa
2.
MAPT-202
NM_001123067
412 aa
3.
MAPT-201
NM_016835
758 aa
4.
MAPT-205
NM_001203251; NM_001203252
410 aa
5.
MAPT-203
NM_001123066
776 aa
6.
MAPT-013
No protein
7.
MAPT-001
NM_016841
352 aa
8.
MAPT-002
NM_016834
383 aa
9.
MAPT-006
410 aa
10.
MAPT-007
441 aa
11.
MAPT-008
758 aa
12.
MAPT-004
776 aa
13.
MAPT-003
412 aa
14.
MAPT-009
341 aa
15.
MAPT-014
No protein
16.
MAPT-011
59 aa
17.
MAPT-010
No protein
18.
MAPT-012
No protein
SRRM2
1.
SRRM2-001
NM_016333
2752 aa
2.
SRRM2-201
311aa
3.
SRRM2-003
1018 aa
4.
SRRM2-006
297 aa
5.
SRRM2-004
No protein
6.
SRRM2-007
895 aa
7.
SRRM2-011
No protein
8.
SRRM2-028
94 aa
9.
SRRM2-012
115 aa
10.
SRRM2-013
251 aa
11.
SRRM2-029
No protein
12.
SRRM2-014
No protein
13.
SRRM2-030
No protein
14.
SRRM2-015
No protein
15.
SRRM2-016
No protein
16.
SRRM2-017
No protein
17.
SRRM2-009
No protein
18.
SRRM2-018
No protein
19.
SRRM2-019
No protein
20.
SRRM2-022
No protein
21.
SRRM2-020
184 aa
22.
SRRM2-021
No protein
23.
SRRM2-023
No protein
24.
SRRM2-024
No protein
25.
SRRM2-025
No protein
26.
SRRM2-026
No protein
27.
SRRM2-010
No protein
28.
SRRM2-027
No protein
29.
SRRM2-031
78 aa
30
SRRM2-032
41 aa
31.
SRRM2-033
No protein
Gene name, Ensembl transcript names, GenBank accession numbers and relative encoded amino acidic protein length of splice variants are reported in the table. Number in the column “Transcript number” identifies the transcript in Fig. 5
The mRNA expression levels of synphilin 1, 1A, and other two additional synphilin variants have been simultaneously investigated in the frontal cortex of PD patients. Their overall overexpression has been demonstrated when compared to healthy controls [24, 65].

MAPT

MAPT gene encodes the microtubule-associated protein tau, a protein involved in microtubule assembly and stability [121]. It is located on chromosome 17q21 and contains 15 exons. It gives rise to multiple splice transcripts (Table 4 and Fig. 5) which are differentially expressed in human tissues [11]. In the adult human central nervous system, MAPT splicing generates six tau isoforms composed of either three or four microtubule-binding repeat motifs in the C-terminal (3R- and 4R-tau).
A number of mutations within and around MAPT exon 10 disrupt exonic and intronic splicing elements as well as the formation of an RNA stem-loop structure at the 5′ splice site (which normally functions to restrict spliceosome assembly). This event results in an altered ratio of 3R/4R isoforms [10, 13]. The disruption of the balance between them results in hyperphosphorylation and aggregation of tau proteins into neurofibrillary tangles, causing the frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) [10, 13]. These data support a direct relationship between aberrant alternative splicing of tau and neuropathology.

GBA

Mutations in β-glucocerebrosidase (GBA) gene cause Gaucher disease, a lysosomal storage disease characterized by an accumulation of glucocerebrosides. Some studies have identified GBA genetic variants as significant risk factors for the development of PD [122, 15].
GBA gene is located in a gene-rich region on chromosome 1q21. It spans 10.4 kb and contains 12 exons. Currently, there are four annotated alternative transcripts encoding proteins (GBA-001, GBA-002, GBA-015, and GBA-016; Table 4 and Fig. 5). Two of them originate from an alternative promoter located 2.6 kb upstream of the first ATG [123]. All transcripts share the same start codon, with the exception of GBA-012, whose open-reading frame starts upon exon 4 and produces a shorter protein isoform. Further transcripts are produced, but they do not encode proteins. The GBA splicing profile has not been studied still, and it is unknown if its alternative splicing is involved in PD.

MAO-B

MAO-B gene is located on chromosome X and includes 15 exons (Table 4 and Fig. 5). Although it is not a confirmed susceptibility gene [18], increased levels of monoamine oxidase B (MAO) mRNA and enzymatic activity have been reported in platelets from patients with both Parkinson’s and Alzheimer’s diseases [124]. Furthermore, it is well established that MAO-B inhibitors delay progression of both pathologies [125, 126].
Several DNA polymorphisms in the MAO-B gene have been described in populations with distinct ethnic backgrounds [124]. A SNP common in all ethnic groups and associated with two-fold risk of PD is the G/A dimorphism in intron 13 sequence [127129]. This SNP does not change the coding sequence and does not affect the consensus acceptor and donor sites. However, it has been demonstrated the G/A dimorphism in intron 13 sequence creates a splicing enhancer that stimulates intron 13 removal and a spliceosomal complex assembly and alters splicing factors’ binding site efficiency [124].

SRRM2

Along with cis-acting elements, alternative splicing regulation relies on trans-splicing factors including the serine/arginine (SR) proteins. One of these proteins, the RNA splicing factor SRRM2 (or serine/arginine repetitive matrix 2), has been identified as the only gene that stood out as differentially expressed in multiple gene expression PD datasets [130].
SRRM2 gene generates two main alternative splicing transcripts different at their 3′ end (Table 4 and Fig. 5). The full-length isoform SRRM2-001 contains 15 exons, while the shorter isoform SRRM2-003 contains 11 exons and lacks exons 12–15. These two isoforms are differentially expressed in postmortem PD brain regions [130]. The shorter transcript was upregulated in the substantia nigra but unchanged in the amygdala of PD patients versus healthy controls. On the contrary, the longer transcript was downregulated in both substantia nigra and amygdala of PDs as compared to controls [130]. Furthermore, in the peripheral blood of patients with PD, SRRM2 short isoform is overexpressed, while the expression of longest isoform is reduced [130].

Genome-wide RNA expression analysis reveals global alternative splicing changes in PD

Although a “gene-by-gene” approach may simplify splicing analysis, global alternative splicing changes in PD have to be considered. The majority of the whole gene expression array studies in PD brain regions have unfortunately looked at a single transcript per gene, ignoring the multiple transcripts generated by alternative splicing [14]. Nonetheless, mRNA splicing has been identified as a mechanism significantly altered in cortical neurons of PD patients [131].
In order to investigate the splicing expression changes, some studies have used exon arrays. This kind of approach, enabling better monitoring and detection of the alternative splicing events, has allowed to observe significant changes in overall gene splicing in PD blood cells compared to healthy controls [130, 132]. Another exon array study has been conducted in blood of advanced PD patients prior to and following deep brain stimulation neurosurgery, a technique that efficiently improves the motor symptoms of PD [133]. This analysis has showed preliminary results suggesting brain electrical stimulation may correlate with significant profile changes in nonsense-mediated mRNA decay (an mRNA surveillance process that detects and selectively degrades splice transcripts harboring premature termination codons) in blood cell transcripts [133]. Potashkin et al. [134] have also used specific splice variant microarrays in PD patients in order to identify mRNAs splice transcripts as molecular biomarkers for an early PD diagnosis. Through this approach, they identified 13 splice variants with an altered expression in early-stage PD patients versus healthy controls [134, 135].
A recent technology to better study splicing defects is deep sequencing of RNA (RNAseq) [14]. The advantage of RNAseq is that it is theoretically feasible to measure both RNA expression levels and modifications such as splicing. In addition, RNAseq gives the possibility of discovering novel transcripts. Whole transcriptome RNAseq data have been obtained from blood leukocytes of PD patients’ predeep and postdeep brain stimulation treatment [136]. This approach has enabled to discover novel human exons and junctions in protein-coding RNA molecules, as well as a large range of differential splicing events pretreatment and posttreatment compared to healthy controls [136]. Although this is the first study using in-depth PD transcriptome sequencing, RNAseq represents a promising technique to better study PD alternative splicing.

The role of miRNA and lncRNA in PD alternative splicing modulation

A large number of alternative exon regions have been predicted as binding sites of microRNAs (miRNAs). The latter is a class of small noncoding RNA molecules, which mainly act as posttranscriptional modulators of multiple target genes by partial sequence complementarity. Through this mechanism, they may also influence splicing process.
The interplay between miRNA differential expression and alternative splicing modification in PD has been recently investigated [137]. Parallel changes in miRNA profiles and their spliced targets have been observed in PD leukocytes and PD-relevant brain regions (including the substantia nigra as well as the frontal lobe). This study was conducted through coupled analysis of small RNA sequencing data, splice junction arrays, and exon arrays [137].
Another novel fascinating class of RNAs with unknown functions is long noncoding RNAs (lncRNAs), defined as transcripts of over 200 nucleotides. The GENCODE noncoding RNA set collects all lncRNAs known so far, including several spliced transcript shorter than 200 bp. LncRNA profiling has been recently assessed in PD leukocytes predeep and postdeep brain stimulation via RNAseq [136]. This survey allowed to identify some lncRNAs overexpressed in PD and inversely decreased following deep brain stimulation [136]. Differentially expressed lncRNA includes the spliceosome component U1, supporting the hypothesis of disease-involved splicing modulations [136].
The identification of existing networks between noncoding mRNAs and alternative splicing modifications represents an important step forward the road to understanding the molecular basis of PD.

Conclusions

Alternative splicing is a highly harmonized process, based on a combination of DNA sequence motifs, intronic and exonic elements, regulatory factors, and temporal and spatial signaling pathways. Mutations that disrupt any of these critical features may alter the finely tuned splicing processes, upsetting the production or functions of the encoded proteins, and finally causing human diseases. Assessing the alternative splicing modulation of PD-related genes represents an important point to understand PD molecular etiology. Future studies, both with the standard or the new currently available large-scale techniques, will offer a complete data pool of the alternative splicing events in PD and will provide new possible insights in order to develop strategies for PD therapy and diagnosis.

Acknowledgments

This study was supported by the international Ph.D. program in Neuroscience of the University of Catania. We also gratefully acknowledge Cristina Calì, Alfia Corsino, Maria Patrizia D’Angelo, and Francesco Marino for their administrative and technical support.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Literatur
5.
Zurück zum Zitat Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40(12):1413–1415. doi:10.1038/ng.259 PubMedCrossRef Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40(12):1413–1415. doi:10.​1038/​ng.​259 PubMedCrossRef
6.
18.
Zurück zum Zitat Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, DeStefano AL, Kara E, Bras J, Sharma M, Schulte C, Keller MF, Arepalli S, Letson C, Edsall C, Stefansson H, Liu X, Pliner H, Lee JH, Cheng R, International Parkinson’s Disease Genomics C, Parkinson’s Study Group Parkinson’s Research: The Organized GI, andMe, GenePd, NeuroGenetics Research C, Hussman Institute of Human G, Ashkenazi Jewish Dataset I, Cohorts for H, Aging Research in Genetic E, North American Brain Expression C, United Kingdom Brain Expression C, Greek Parkinson’s Disease C, Alzheimer Genetic Analysis G, Ikram MA, Ioannidis JP, Hadjigeorgiou GM, Bis JC, Martinez M, Perlmutter JS, Goate A, Marder K, Fiske B, Sutherland M, Xiromerisiou G, Myers RH, Clark LN, Stefansson K, Hardy JA, Heutink P, Chen H, Wood NW, Houlden H, Payami H, Brice A, Scott WK, Gasser T, Bertram L, Eriksson N, Foroud T, Singleton AB (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 46(9):989–993. doi:10.1038/ng.3043 PubMedCentralPubMedCrossRef Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, DeStefano AL, Kara E, Bras J, Sharma M, Schulte C, Keller MF, Arepalli S, Letson C, Edsall C, Stefansson H, Liu X, Pliner H, Lee JH, Cheng R, International Parkinson’s Disease Genomics C, Parkinson’s Study Group Parkinson’s Research: The Organized GI, andMe, GenePd, NeuroGenetics Research C, Hussman Institute of Human G, Ashkenazi Jewish Dataset I, Cohorts for H, Aging Research in Genetic E, North American Brain Expression C, United Kingdom Brain Expression C, Greek Parkinson’s Disease C, Alzheimer Genetic Analysis G, Ikram MA, Ioannidis JP, Hadjigeorgiou GM, Bis JC, Martinez M, Perlmutter JS, Goate A, Marder K, Fiske B, Sutherland M, Xiromerisiou G, Myers RH, Clark LN, Stefansson K, Hardy JA, Heutink P, Chen H, Wood NW, Houlden H, Payami H, Brice A, Scott WK, Gasser T, Bertram L, Eriksson N, Foroud T, Singleton AB (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 46(9):989–993. doi:10.​1038/​ng.​3043 PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Nuytemans K, Meeus B, Crosiers D, Brouwers N, Goossens D, Engelborghs S, Pals P, Pickut B, Van den Broeck M, Corsmit E, Cras P, De Deyn PP, Del-Favero J, Van Broeckhoven C, Theuns J (2009) Relative contribution of simple mutations vs. copy number variations in five Parkinson disease genes in the Belgian population. Hum Mutat 30(7):1054–1061. doi:10.1002/humu.21007 PubMedCrossRef Nuytemans K, Meeus B, Crosiers D, Brouwers N, Goossens D, Engelborghs S, Pals P, Pickut B, Van den Broeck M, Corsmit E, Cras P, De Deyn PP, Del-Favero J, Van Broeckhoven C, Theuns J (2009) Relative contribution of simple mutations vs. copy number variations in five Parkinson disease genes in the Belgian population. Hum Mutat 30(7):1054–1061. doi:10.​1002/​humu.​21007 PubMedCrossRef
23.
Zurück zum Zitat Beyer K, Domingo-Sabat M, Lao JI, Carrato C, Ferrer I, Ariza A (2008) Identification and characterization of a new alpha-synuclein isoform and its role in Lewy body diseases. Neurogenetics 9(1):15–23. doi:10.1007/s10048-007-0106-0 PubMedCrossRef Beyer K, Domingo-Sabat M, Lao JI, Carrato C, Ferrer I, Ariza A (2008) Identification and characterization of a new alpha-synuclein isoform and its role in Lewy body diseases. Neurogenetics 9(1):15–23. doi:10.​1007/​s10048-007-0106-0 PubMedCrossRef
24.
Zurück zum Zitat Beyer K, Domingo-Sabat M, Humbert J, Carrato C, Ferrer I, Ariza A (2008) Differential expression of alpha-synuclein, parkin, and synphilin-1 isoforms in Lewy body disease. Neurogenetics 9(3):163–172. doi:10.1007/s10048-008-0124-6 PubMedCrossRef Beyer K, Domingo-Sabat M, Humbert J, Carrato C, Ferrer I, Ariza A (2008) Differential expression of alpha-synuclein, parkin, and synphilin-1 isoforms in Lewy body disease. Neurogenetics 9(3):163–172. doi:10.​1007/​s10048-008-0124-6 PubMedCrossRef
25.
Zurück zum Zitat McLean JR, Hallett PJ, Cooper O, Stanley M, Isacson O (2012) Transcript expression levels of full-length alpha-synuclein and its three alternatively spliced variants in Parkinson’s disease brain regions and in a transgenic mouse model of alpha-synuclein overexpression. Mol Cell Neurosci 49(2):230–239. doi:10.1016/j.mcn.2011.11.006 PubMedCentralPubMedCrossRef McLean JR, Hallett PJ, Cooper O, Stanley M, Isacson O (2012) Transcript expression levels of full-length alpha-synuclein and its three alternatively spliced variants in Parkinson’s disease brain regions and in a transgenic mouse model of alpha-synuclein overexpression. Mol Cell Neurosci 49(2):230–239. doi:10.​1016/​j.​mcn.​2011.​11.​006 PubMedCentralPubMedCrossRef
26.
Zurück zum Zitat Cardo LF, Coto E, de Mena L, Ribacoba R, Mata IF, Menendez M, Moris G, Alvarez V (2014) Alpha-synuclein transcript isoforms in three different brain regions from Parkinson’s disease and healthy subjects in relation to the SNCA rs356165/rs11931074 polymorphisms. Neurosci Lett 562:45–49. doi:10.1016/j.neulet.2014.01.009 PubMedCrossRef Cardo LF, Coto E, de Mena L, Ribacoba R, Mata IF, Menendez M, Moris G, Alvarez V (2014) Alpha-synuclein transcript isoforms in three different brain regions from Parkinson’s disease and healthy subjects in relation to the SNCA rs356165/rs11931074 polymorphisms. Neurosci Lett 562:45–49. doi:10.​1016/​j.​neulet.​2014.​01.​009 PubMedCrossRef
36.
Zurück zum Zitat Johnson J, Paisan-Ruiz C, Lopez G, Crews C, Britton A, Malkani R, Evans EW, McInerney-Leo A, Jain S, Nussbaum RL, Foote KD, Mandel RJ, Crawley A, Reimsnider S, Fernandez HH, Okun MS, Gwinn-Hardy K, Singleton AB (2007) Comprehensive screening of a North American Parkinson’s disease cohort for LRRK2 mutation. Neurodegener Dis 4(5):386–391. doi:10.1159/000105160 PubMedCrossRef Johnson J, Paisan-Ruiz C, Lopez G, Crews C, Britton A, Malkani R, Evans EW, McInerney-Leo A, Jain S, Nussbaum RL, Foote KD, Mandel RJ, Crawley A, Reimsnider S, Fernandez HH, Okun MS, Gwinn-Hardy K, Singleton AB (2007) Comprehensive screening of a North American Parkinson’s disease cohort for LRRK2 mutation. Neurodegener Dis 4(5):386–391. doi:10.​1159/​000105160 PubMedCrossRef
37.
39.
Zurück zum Zitat Shojaee S, Sina F, Farboodi N, Fazlali Z, Ghazavi F, Ghorashi SA, Parsa K, Sadeghi H, Shahidi GA, Ronaghi M, Elahi E (2009) A clinic-based screening of mutations in exons 31, 34, 35, 41, and 48 of LRRK2 in Iranian Parkinson’s disease patients. Mov Disord 24(7):1023–1027. doi:10.1002/mds.22503 PubMedCrossRef Shojaee S, Sina F, Farboodi N, Fazlali Z, Ghazavi F, Ghorashi SA, Parsa K, Sadeghi H, Shahidi GA, Ronaghi M, Elahi E (2009) A clinic-based screening of mutations in exons 31, 34, 35, 41, and 48 of LRRK2 in Iranian Parkinson’s disease patients. Mov Disord 24(7):1023–1027. doi:10.​1002/​mds.​22503 PubMedCrossRef
40.
Zurück zum Zitat Di Fonzo A, Tassorelli C, De Mari M, Chien HF, Ferreira J, Rohe CF, Riboldazzi G, Antonini A, Albani G, Mauro A, Marconi R, Abbruzzese G, Lopiano L, Fincati E, Guidi M, Marini P, Stocchi F, Onofrj M, Toni V, Tinazzi M, Fabbrini G, Lamberti P, Vanacore N, Meco G, Leitner P, Uitti RJ, Wszolek ZK, Gasser T, Simons EJ, Breedveld GJ, Goldwurm S, Pezzoli G, Sampaio C, Barbosa E, Martignoni E, Oostra BA, Bonifati V, Italian Parkinson’s Genetics N (2006) Comprehensive analysis of the LRRK2 gene in sixty families with Parkinson’s disease. Eur J Hum Genet 14(3):322–331. doi:10.1038/sj.ejhg.5201539 PubMedCrossRef Di Fonzo A, Tassorelli C, De Mari M, Chien HF, Ferreira J, Rohe CF, Riboldazzi G, Antonini A, Albani G, Mauro A, Marconi R, Abbruzzese G, Lopiano L, Fincati E, Guidi M, Marini P, Stocchi F, Onofrj M, Toni V, Tinazzi M, Fabbrini G, Lamberti P, Vanacore N, Meco G, Leitner P, Uitti RJ, Wszolek ZK, Gasser T, Simons EJ, Breedveld GJ, Goldwurm S, Pezzoli G, Sampaio C, Barbosa E, Martignoni E, Oostra BA, Bonifati V, Italian Parkinson’s Genetics N (2006) Comprehensive analysis of the LRRK2 gene in sixty families with Parkinson’s disease. Eur J Hum Genet 14(3):322–331. doi:10.​1038/​sj.​ejhg.​5201539 PubMedCrossRef
41.
Zurück zum Zitat Grimes DA, Racacho L, Han F, Panisset M, Bulman DE (2007) LRRK2 screening in a Canadian Parkinson’s disease cohort. Can J Neurol Sci 34(3):336–338PubMedCrossRef Grimes DA, Racacho L, Han F, Panisset M, Bulman DE (2007) LRRK2 screening in a Canadian Parkinson’s disease cohort. Can J Neurol Sci 34(3):336–338PubMedCrossRef
42.
Zurück zum Zitat Paisan-Ruiz C, Nath P, Washecka N, Gibbs JR, Singleton AB (2008) Comprehensive analysis of LRRK2 in publicly available Parkinson’s disease cases and neurologically normal controls. Hum Mutat 29(4):485–490. doi:10.1002/humu.20668 PubMedCrossRef Paisan-Ruiz C, Nath P, Washecka N, Gibbs JR, Singleton AB (2008) Comprehensive analysis of LRRK2 in publicly available Parkinson’s disease cases and neurologically normal controls. Hum Mutat 29(4):485–490. doi:10.​1002/​humu.​20668 PubMedCrossRef
43.
Zurück zum Zitat Lesage S, Condroyer C, Lannuzel A, Lohmann E, Troiano A, Tison F, Damier P, Thobois S, Ouvrard-Hernandez AM, Rivaud-Pechoux S, Brefel-Courbon C, Destee A, Tranchant C, Romana M, Leclere L, Durr A, Brice A, French Parkinson’s Disease Genetics Study G (2009) Molecular analyses of the LRRK2 gene in European and North African autosomal dominant Parkinson’s disease. J Med Genet 46(7):458–464. doi:10.1136/jmg.2008.062612 PubMedCrossRef Lesage S, Condroyer C, Lannuzel A, Lohmann E, Troiano A, Tison F, Damier P, Thobois S, Ouvrard-Hernandez AM, Rivaud-Pechoux S, Brefel-Courbon C, Destee A, Tranchant C, Romana M, Leclere L, Durr A, Brice A, French Parkinson’s Disease Genetics Study G (2009) Molecular analyses of the LRRK2 gene in European and North African autosomal dominant Parkinson’s disease. J Med Genet 46(7):458–464. doi:10.​1136/​jmg.​2008.​062612 PubMedCrossRef
44.
Zurück zum Zitat Trabzuni D, Ryten M, Emmett W, Ramasamy A, Lackner KJ, Zeller T, Walker R, Smith C, Lewis PA, Mamais A, de Silva R, Vandrovcova J, International Parkinson Disease Genomics C, Hernandez D, Nalls MA, Sharma M, Garnier S, Lesage S, Simon-Sanchez J, Gasser T, Heutink P, Brice A, Singleton A, Cai H, Schadt E, Wood NW, Bandopadhyay R, Weale ME, Hardy J, Plagnol V (2013) Fine-mapping, gene expression and splicing analysis of the disease associated LRRK2 locus. PLoS ONE 8(8):e70724. doi:10.1371/journal.pone.0070724 PubMedCentralPubMedCrossRef Trabzuni D, Ryten M, Emmett W, Ramasamy A, Lackner KJ, Zeller T, Walker R, Smith C, Lewis PA, Mamais A, de Silva R, Vandrovcova J, International Parkinson Disease Genomics C, Hernandez D, Nalls MA, Sharma M, Garnier S, Lesage S, Simon-Sanchez J, Gasser T, Heutink P, Brice A, Singleton A, Cai H, Schadt E, Wood NW, Bandopadhyay R, Weale ME, Hardy J, Plagnol V (2013) Fine-mapping, gene expression and splicing analysis of the disease associated LRRK2 locus. PLoS ONE 8(8):e70724. doi:10.​1371/​journal.​pone.​0070724 PubMedCentralPubMedCrossRef
46.
47.
Zurück zum Zitat Vilarino-Guell C, Wider C, Ross OA, Dachsel JC, Kachergus JM, Lincoln SJ, Soto-Ortolaza AI, Cobb SA, Wilhoite GJ, Bacon JA, Behrouz B, Melrose HL, Hentati E, Puschmann A, Evans DM, Conibear E, Wasserman WW, Aasly JO, Burkhard PR, Djaldetti R, Ghika J, Hentati F, Krygowska-Wajs A, Lynch T, Melamed E, Rajput A, Rajput AH, Solida A, Wu RM, Uitti RJ, Wszolek ZK, Vingerhoets F, Farrer MJ (2011) VPS35 mutations in Parkinson disease. Am J Hum Genet 89(1):162–167. doi:10.1016/j.ajhg.2011.06.001 PubMedCentralPubMedCrossRef Vilarino-Guell C, Wider C, Ross OA, Dachsel JC, Kachergus JM, Lincoln SJ, Soto-Ortolaza AI, Cobb SA, Wilhoite GJ, Bacon JA, Behrouz B, Melrose HL, Hentati E, Puschmann A, Evans DM, Conibear E, Wasserman WW, Aasly JO, Burkhard PR, Djaldetti R, Ghika J, Hentati F, Krygowska-Wajs A, Lynch T, Melamed E, Rajput A, Rajput AH, Solida A, Wu RM, Uitti RJ, Wszolek ZK, Vingerhoets F, Farrer MJ (2011) VPS35 mutations in Parkinson disease. Am J Hum Genet 89(1):162–167. doi:10.​1016/​j.​ajhg.​2011.​06.​001 PubMedCentralPubMedCrossRef
48.
Zurück zum Zitat Zimprich A, Benet-Pages A, Struhal W, Graf E, Eck SH, Offman MN, Haubenberger D, Spielberger S, Schulte EC, Lichtner P, Rossle SC, Klopp N, Wolf E, Seppi K, Pirker W, Presslauer S, Mollenhauer B, Katzenschlager R, Foki T, Hotzy C, Reinthaler E, Harutyunyan A, Kralovics R, Peters A, Zimprich F, Brucke T, Poewe W, Auff E, Trenkwalder C, Rost B, Ransmayr G, Winkelmann J, Meitinger T, Strom TM (2011) A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet 89(1):168–175. doi:10.1016/j.ajhg.2011.06.008 PubMedCentralPubMedCrossRef Zimprich A, Benet-Pages A, Struhal W, Graf E, Eck SH, Offman MN, Haubenberger D, Spielberger S, Schulte EC, Lichtner P, Rossle SC, Klopp N, Wolf E, Seppi K, Pirker W, Presslauer S, Mollenhauer B, Katzenschlager R, Foki T, Hotzy C, Reinthaler E, Harutyunyan A, Kralovics R, Peters A, Zimprich F, Brucke T, Poewe W, Auff E, Trenkwalder C, Rost B, Ransmayr G, Winkelmann J, Meitinger T, Strom TM (2011) A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet 89(1):168–175. doi:10.​1016/​j.​ajhg.​2011.​06.​008 PubMedCentralPubMedCrossRef
49.
Zurück zum Zitat Verstraeten A, Wauters E, Crosiers D, Meeus B, Corsmit E, Elinck E, Mattheijssens M, Peeters K, Cras P, Pickut B, Vandenberghe R, Engelborghs S, De Deyn PP, Van Broeckhoven C (1844) Theuns J (2012) Contribution of VPS35 genetic variability to LBD in the Flanders–Belgian population. Neurobiol Aging 33(8):e1811–e1843. doi:10.1016/j.neurobiolaging.2012.01.006 Verstraeten A, Wauters E, Crosiers D, Meeus B, Corsmit E, Elinck E, Mattheijssens M, Peeters K, Cras P, Pickut B, Vandenberghe R, Engelborghs S, De Deyn PP, Van Broeckhoven C (1844) Theuns J (2012) Contribution of VPS35 genetic variability to LBD in the Flanders–Belgian population. Neurobiol Aging 33(8):e1811–e1843. doi:10.​1016/​j.​neurobiolaging.​2012.​01.​006
51.
Zurück zum Zitat Lucking CB, Durr A, Bonifati V, Vaughan J, De Michele G, Gasser T, Harhangi BS, Meco G, Denefle P, Wood NW, Agid Y, Brice A, French Parkinson’s Disease Genetics Study G, European Consortium on Genetic Susceptibility in Parkinson’s D (2000) Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med 342(21):1560–1567. doi:10.1056/NEJM200005253422103 PubMedCrossRef Lucking CB, Durr A, Bonifati V, Vaughan J, De Michele G, Gasser T, Harhangi BS, Meco G, Denefle P, Wood NW, Agid Y, Brice A, French Parkinson’s Disease Genetics Study G, European Consortium on Genetic Susceptibility in Parkinson’s D (2000) Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med 342(21):1560–1567. doi:10.​1056/​NEJM200005253422​103 PubMedCrossRef
52.
Zurück zum Zitat Oliveira SA, Scott WK, Martin ER, Nance MA, Watts RL, Hubble JP, Koller WC, Pahwa R, Stern MB, Hiner BC, Ondo WG, Allen FH Jr, Scott BL, Goetz CG, Small GW, Mastaglia F, Stajich JM, Zhang F, Booze MW, Winn MP, Middleton LT, Haines JL, Pericak-Vance MA, Vance JM (2003) Parkin mutations and susceptibility alleles in late-onset Parkinson’s disease. Ann Neurol 53(5):624–629. doi:10.1002/ana.10524 PubMedCrossRef Oliveira SA, Scott WK, Martin ER, Nance MA, Watts RL, Hubble JP, Koller WC, Pahwa R, Stern MB, Hiner BC, Ondo WG, Allen FH Jr, Scott BL, Goetz CG, Small GW, Mastaglia F, Stajich JM, Zhang F, Booze MW, Winn MP, Middleton LT, Haines JL, Pericak-Vance MA, Vance JM (2003) Parkin mutations and susceptibility alleles in late-onset Parkinson’s disease. Ann Neurol 53(5):624–629. doi:10.​1002/​ana.​10524 PubMedCrossRef
53.
Zurück zum Zitat Illarioshkin SN, Periquet M, Rawal N, Lucking CB, Zagorovskaya TB, Slominsky PA, Miloserdova OV, Markova ED, Limborska SA, Ivanova-Smolenskaya IA, Brice A (2003) Mutation analysis of the parkin gene in Russian families with autosomal recessive juvenile parkinsonism. Mov Disord 18(8):914–919. doi:10.1002/mds.10467 PubMedCrossRef Illarioshkin SN, Periquet M, Rawal N, Lucking CB, Zagorovskaya TB, Slominsky PA, Miloserdova OV, Markova ED, Limborska SA, Ivanova-Smolenskaya IA, Brice A (2003) Mutation analysis of the parkin gene in Russian families with autosomal recessive juvenile parkinsonism. Mov Disord 18(8):914–919. doi:10.​1002/​mds.​10467 PubMedCrossRef
54.
Zurück zum Zitat Pigullo S, De Luca A, Barone P, Marchese R, Bellone E, Colosimo A, Scaglione C, Martinelli P, Di Maria E, Pizzuti A, Abbruzzese G, Dallapiccola B, Ajmar F, Mandich P (2004) Mutational analysis of parkin gene by denaturing high-performance liquid chromatography (DHPLC) in essential tremor. Parkinsonism Relat Disord 10(6):357–362. doi:10.1016/j.parkreldis.2004.04.012 PubMedCrossRef Pigullo S, De Luca A, Barone P, Marchese R, Bellone E, Colosimo A, Scaglione C, Martinelli P, Di Maria E, Pizzuti A, Abbruzzese G, Dallapiccola B, Ajmar F, Mandich P (2004) Mutational analysis of parkin gene by denaturing high-performance liquid chromatography (DHPLC) in essential tremor. Parkinsonism Relat Disord 10(6):357–362. doi:10.​1016/​j.​parkreldis.​2004.​04.​012 PubMedCrossRef
55.
Zurück zum Zitat Scherfler C, Khan NL, Pavese N, Eunson L, Graham E, Lees AJ, Quinn NP, Wood NW, Brooks DJ, Piccini PP (2004) Striatal and cortical pre- and postsynaptic dopaminergic dysfunction in sporadic parkin-linked parkinsonism. Brain 127(Pt 6):1332–1342. doi:10.1093/brain/awh150 PubMedCrossRef Scherfler C, Khan NL, Pavese N, Eunson L, Graham E, Lees AJ, Quinn NP, Wood NW, Brooks DJ, Piccini PP (2004) Striatal and cortical pre- and postsynaptic dopaminergic dysfunction in sporadic parkin-linked parkinsonism. Brain 127(Pt 6):1332–1342. doi:10.​1093/​brain/​awh150 PubMedCrossRef
56.
Zurück zum Zitat Bertoli-Avella AM, Giroud-Benitez JL, Akyol A, Barbosa E, Schaap O, van der Linde HC, Martignoni E, Lopiano L, Lamberti P, Fincati E, Antonini A, Stocchi F, Montagna P, Squitieri F, Marini P, Abbruzzese G, Fabbrini G, Marconi R, Dalla Libera A, Trianni G, Guidi M, De Gaetano A, Boff Maegawa G, De Leo A, Gallai V, de Rosa G, Vanacore N, Meco G, van Duijn CM, Oostra BA, Heutink P, Bonifati V, Italian Parkinson Genetics N (2005) Novel parkin mutations detected in patients with early-onset Parkinson’s disease. Mov Disord 20(4):424–431. doi:10.1002/mds.20343 PubMedCrossRef Bertoli-Avella AM, Giroud-Benitez JL, Akyol A, Barbosa E, Schaap O, van der Linde HC, Martignoni E, Lopiano L, Lamberti P, Fincati E, Antonini A, Stocchi F, Montagna P, Squitieri F, Marini P, Abbruzzese G, Fabbrini G, Marconi R, Dalla Libera A, Trianni G, Guidi M, De Gaetano A, Boff Maegawa G, De Leo A, Gallai V, de Rosa G, Vanacore N, Meco G, van Duijn CM, Oostra BA, Heutink P, Bonifati V, Italian Parkinson Genetics N (2005) Novel parkin mutations detected in patients with early-onset Parkinson’s disease. Mov Disord 20(4):424–431. doi:10.​1002/​mds.​20343 PubMedCrossRef
60.
Zurück zum Zitat Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608PubMedCrossRef Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608PubMedCrossRef
61.
Zurück zum Zitat Matsumine H, Saito M, Shimoda-Matsubayashi S, Tanaka H, Ishikawa A, Nakagawa-Hattori Y, Yokochi M, Kobayashi T, Igarashi S, Takano H, Sanpei K, Koike R, Mori H, Kondo T, Mizutani Y, Schaffer AA, Yamamura Y, Nakamura S, Kuzuhara S, Tsuji S, Mizuno Y (1997) Localization of a gene for an autosomal recessive form of juvenile parkinsonism to chromosome 6q25.2–27. Am J Hum Genet 60(3):588–596PubMedCentralPubMed Matsumine H, Saito M, Shimoda-Matsubayashi S, Tanaka H, Ishikawa A, Nakagawa-Hattori Y, Yokochi M, Kobayashi T, Igarashi S, Takano H, Sanpei K, Koike R, Mori H, Kondo T, Mizutani Y, Schaffer AA, Yamamura Y, Nakamura S, Kuzuhara S, Tsuji S, Mizuno Y (1997) Localization of a gene for an autosomal recessive form of juvenile parkinsonism to chromosome 6q25.2–27. Am J Hum Genet 60(3):588–596PubMedCentralPubMed
63.
Zurück zum Zitat Ikeuchi K, Marusawa H, Fujiwara M, Matsumoto Y, Endo Y, Watanabe T, Iwai A, Sakai Y, Takahashi R, Chiba T (2009) Attenuation of proteolysis-mediated cyclin E regulation by alternatively spliced parkin in human colorectal cancers. Int J Cancer 125(9):2029–2035. doi:10.1002/ijc.24565 PubMedCrossRef Ikeuchi K, Marusawa H, Fujiwara M, Matsumoto Y, Endo Y, Watanabe T, Iwai A, Sakai Y, Takahashi R, Chiba T (2009) Attenuation of proteolysis-mediated cyclin E regulation by alternatively spliced parkin in human colorectal cancers. Int J Cancer 125(9):2029–2035. doi:10.​1002/​ijc.​24565 PubMedCrossRef
64.
Zurück zum Zitat Kitada T, Asakawa S, Minoshima S, Mizuno Y, Shimizu N (2000) Molecular cloning, gene expression, and identification of a splicing variant of the mouse parkin gene. Mamm Genome 11(6):417–421PubMedCrossRef Kitada T, Asakawa S, Minoshima S, Mizuno Y, Shimizu N (2000) Molecular cloning, gene expression, and identification of a splicing variant of the mouse parkin gene. Mamm Genome 11(6):417–421PubMedCrossRef
66.
Zurück zum Zitat Tan EK, Shen H, Tan JM, Lim KL, Fook-Chong S, Hu WP, Paterson MC, Chandran VR, Yew K, Tan C, Yuen Y, Pavanni R, Wong MC, Puvan K, Zhao Y (2005) Differential expression of splice variant and wild-type parkin in sporadic Parkinson’s disease. Neurogenetics 6(4):179–184. doi:10.1007/s10048-005-0001-5 PubMedCrossRef Tan EK, Shen H, Tan JM, Lim KL, Fook-Chong S, Hu WP, Paterson MC, Chandran VR, Yew K, Tan C, Yuen Y, Pavanni R, Wong MC, Puvan K, Zhao Y (2005) Differential expression of splice variant and wild-type parkin in sporadic Parkinson’s disease. Neurogenetics 6(4):179–184. doi:10.​1007/​s10048-005-0001-5 PubMedCrossRef
67.
Zurück zum Zitat Dagata V, Cavallaro S (2004) Parkin transcript variants in rat and human brain. Neurochem Res 29(9):1715–1724PubMedCrossRef Dagata V, Cavallaro S (2004) Parkin transcript variants in rat and human brain. Neurochem Res 29(9):1715–1724PubMedCrossRef
68.
Zurück zum Zitat Sunada Y, Saito F, Matsumura K, Shimizu T (1998) Differential expression of the parkin gene in the human brain and peripheral leukocytes. Neurosci Lett 254(3):180–182PubMedCrossRef Sunada Y, Saito F, Matsumura K, Shimizu T (1998) Differential expression of the parkin gene in the human brain and peripheral leukocytes. Neurosci Lett 254(3):180–182PubMedCrossRef
69.
Zurück zum Zitat Solano SM, Miller DW, Augood SJ, Young AB, Penney JB Jr (2000) Expression of alpha-synuclein, parkin, and ubiquitin carboxy-terminal hydrolase L1 mRNA in human brain: genes associated with familial Parkinson’s disease. Ann Neurol 47(2):201–210PubMedCrossRef Solano SM, Miller DW, Augood SJ, Young AB, Penney JB Jr (2000) Expression of alpha-synuclein, parkin, and ubiquitin carboxy-terminal hydrolase L1 mRNA in human brain: genes associated with familial Parkinson’s disease. Ann Neurol 47(2):201–210PubMedCrossRef
71.
Zurück zum Zitat Pawlyk AC, Giasson BI, Sampathu DM, Perez FA, Lim KL, Dawson VL, Dawson TM, Palmiter RD, Trojanowski JQ, Lee VM (2003) Novel monoclonal antibodies demonstrate biochemical variation of brain parkin with age. J Biol Chem 278(48):48120–48128. doi:10.1074/jbc.M306889200 PubMedCrossRef Pawlyk AC, Giasson BI, Sampathu DM, Perez FA, Lim KL, Dawson VL, Dawson TM, Palmiter RD, Trojanowski JQ, Lee VM (2003) Novel monoclonal antibodies demonstrate biochemical variation of brain parkin with age. J Biol Chem 278(48):48120–48128. doi:10.​1074/​jbc.​M306889200 PubMedCrossRef
72.
Zurück zum Zitat Horowitz JM, Myers J, Stachowiak MK, Torres G (1999) Identification and distribution of Parkin in rat brain. Neuroreport 10(16):3393–3397PubMedCrossRef Horowitz JM, Myers J, Stachowiak MK, Torres G (1999) Identification and distribution of Parkin in rat brain. Neuroreport 10(16):3393–3397PubMedCrossRef
73.
Zurück zum Zitat Stichel CC, Augustin M, Kuhn K, Zhu XR, Engels P, Ullmer C, Lubbert H (2000) Parkin expression in the adult mouse brain. Eur J Neurosci 12(12):4181–4194PubMed Stichel CC, Augustin M, Kuhn K, Zhu XR, Engels P, Ullmer C, Lubbert H (2000) Parkin expression in the adult mouse brain. Eur J Neurosci 12(12):4181–4194PubMed
74.
Zurück zum Zitat Gu WJ, Abbas N, Lagunes MZ, Parent A, Pradier L, Bohme GA, Agid Y, Hirsch EC, Raisman-Vozari R, Brice A (2000) Cloning of rat parkin cDNA and distribution of parkin in rat brain. J Neurochem 74(4):1773–1776PubMedCrossRef Gu WJ, Abbas N, Lagunes MZ, Parent A, Pradier L, Bohme GA, Agid Y, Hirsch EC, Raisman-Vozari R, Brice A (2000) Cloning of rat parkin cDNA and distribution of parkin in rat brain. J Neurochem 74(4):1773–1776PubMedCrossRef
75.
Zurück zum Zitat Huynh DP, Dy M, Nguyen D, Kiehl TR, Pulst SM (2001) Differential expression and tissue distribution of parkin isoforms during mouse development. Brain Res Dev Brain Res 130(2):173–181PubMedCrossRef Huynh DP, Dy M, Nguyen D, Kiehl TR, Pulst SM (2001) Differential expression and tissue distribution of parkin isoforms during mouse development. Brain Res Dev Brain Res 130(2):173–181PubMedCrossRef
76.
Zurück zum Zitat D’Agata V, Grimaldi M, Pascale A, Cavallaro S (2000) Regional and cellular expression of the parkin gene in the rat cerebral cortex. Eur J Neurosci 12(10):3583–3588PubMedCrossRef D’Agata V, Grimaldi M, Pascale A, Cavallaro S (2000) Regional and cellular expression of the parkin gene in the rat cerebral cortex. Eur J Neurosci 12(10):3583–3588PubMedCrossRef
78.
79.
Zurück zum Zitat Marongiu R, Brancati F, Antonini A, Ialongo T, Ceccarini C, Scarciolla O, Capalbo A, Benti R, Pezzoli G, Dallapiccola B, Goldwurm S, Valente EM (2007) Whole gene deletion and splicing mutations expand the PINK1 genotypic spectrum. Hum Mutat 28(1):98. doi:10.1002/humu.9472 PubMedCrossRef Marongiu R, Brancati F, Antonini A, Ialongo T, Ceccarini C, Scarciolla O, Capalbo A, Benti R, Pezzoli G, Dallapiccola B, Goldwurm S, Valente EM (2007) Whole gene deletion and splicing mutations expand the PINK1 genotypic spectrum. Hum Mutat 28(1):98. doi:10.​1002/​humu.​9472 PubMedCrossRef
80.
Zurück zum Zitat Samaranch L, Lorenzo-Betancor O, Arbelo JM, Ferrer I, Lorenzo E, Irigoyen J, Pastor MA, Marrero C, Isla C, Herrera-Henriquez J, Pastor P (2010) PINK1-linked parkinsonism is associated with Lewy body pathology. Brain 133(Pt 4):1128–1142. doi:10.1093/brain/awq051 PubMedCrossRef Samaranch L, Lorenzo-Betancor O, Arbelo JM, Ferrer I, Lorenzo E, Irigoyen J, Pastor MA, Marrero C, Isla C, Herrera-Henriquez J, Pastor P (2010) PINK1-linked parkinsonism is associated with Lewy body pathology. Brain 133(Pt 4):1128–1142. doi:10.​1093/​brain/​awq051 PubMedCrossRef
81.
Zurück zum Zitat Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304(5674):1158–1160. doi:10.1126/science.1096284 PubMedCrossRef Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304(5674):1158–1160. doi:10.​1126/​science.​1096284 PubMedCrossRef
82.
Zurück zum Zitat Silvestri L, Caputo V, Bellacchio E, Atorino L, Dallapiccola B, Valente EM, Casari G (2005) Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet 14(22):3477–3492. doi:10.1093/hmg/ddi377 PubMedCrossRef Silvestri L, Caputo V, Bellacchio E, Atorino L, Dallapiccola B, Valente EM, Casari G (2005) Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet 14(22):3477–3492. doi:10.​1093/​hmg/​ddi377 PubMedCrossRef
83.
Zurück zum Zitat Beilina A, Van Der Brug M, Ahmad R, Kesavapany S, Miller DW, Petsko GA, Cookson MR (2005) Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proc Natl Acad Sci U S A 102(16):5703–5708. doi:10.1073/pnas.0500617102 PubMedCentralPubMedCrossRef Beilina A, Van Der Brug M, Ahmad R, Kesavapany S, Miller DW, Petsko GA, Cookson MR (2005) Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proc Natl Acad Sci U S A 102(16):5703–5708. doi:10.​1073/​pnas.​0500617102 PubMedCentralPubMedCrossRef
86.
Zurück zum Zitat Deas E, Plun-Favreau H, Gandhi S, Desmond H, Kjaer S, Loh SH, Renton AE, Harvey RJ, Whitworth AJ, Martins LM, Abramov AY, Wood NW (2011) PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum Mol Genet 20(5):867–879. doi:10.1093/hmg/ddq526 PubMedCentralPubMedCrossRef Deas E, Plun-Favreau H, Gandhi S, Desmond H, Kjaer S, Loh SH, Renton AE, Harvey RJ, Whitworth AJ, Martins LM, Abramov AY, Wood NW (2011) PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum Mol Genet 20(5):867–879. doi:10.​1093/​hmg/​ddq526 PubMedCentralPubMedCrossRef
87.
Zurück zum Zitat Lockhart PJ, Lincoln S, Hulihan M, Kachergus J, Wilkes K, Bisceglio G, Mash DC, Farrer MJ (2004) DJ-1 mutations are a rare cause of recessively inherited early onset parkinsonism mediated by loss of protein function. J Med Genet 41(3):e22PubMedCentralPubMedCrossRef Lockhart PJ, Lincoln S, Hulihan M, Kachergus J, Wilkes K, Bisceglio G, Mash DC, Farrer MJ (2004) DJ-1 mutations are a rare cause of recessively inherited early onset parkinsonism mediated by loss of protein function. J Med Genet 41(3):e22PubMedCentralPubMedCrossRef
89.
Zurück zum Zitat Bonifati V, Rizzu P, Squitieri F, Krieger E, Vanacore N, van Swieten JC, Brice A, van Duijn CM, Oostra B, Meco G, Heutink P (2003) DJ-1( PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurol Sci 24(3):159–160. doi:10.1007/s10072-003-0108-0 PubMedCrossRef Bonifati V, Rizzu P, Squitieri F, Krieger E, Vanacore N, van Swieten JC, Brice A, van Duijn CM, Oostra B, Meco G, Heutink P (2003) DJ-1( PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurol Sci 24(3):159–160. doi:10.​1007/​s10072-003-0108-0 PubMedCrossRef
90.
Zurück zum Zitat van Duijn CM, Dekker MC, Bonifati V, Galjaard RJ, Houwing-Duistermaat JJ, Snijders PJ, Testers L, Breedveld GJ, Horstink M, Sandkuijl LA, van Swieten JC, Oostra BA, Heutink P (2001) Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36. Am J Hum Genet 69(3):629–634. doi:10.1086/322996 PubMedCentralPubMedCrossRef van Duijn CM, Dekker MC, Bonifati V, Galjaard RJ, Houwing-Duistermaat JJ, Snijders PJ, Testers L, Breedveld GJ, Horstink M, Sandkuijl LA, van Swieten JC, Oostra BA, Heutink P (2001) Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36. Am J Hum Genet 69(3):629–634. doi:10.​1086/​322996 PubMedCentralPubMedCrossRef
92.
Zurück zum Zitat Tarantino P, Civitelli D, Annesi F, De Marco EV, Rocca FE, Pugliese P, Nicoletti G, Carrideo S, Provenzano G, Annesi G, Quattrone A (2009) Compound heterozygosity in DJ-1 gene non-coding portion related to parkinsonism. Parkinsonism Relat Disord 15(4):324–326. doi:10.1016/j.parkreldis.2008.07.001 PubMedCrossRef Tarantino P, Civitelli D, Annesi F, De Marco EV, Rocca FE, Pugliese P, Nicoletti G, Carrideo S, Provenzano G, Annesi G, Quattrone A (2009) Compound heterozygosity in DJ-1 gene non-coding portion related to parkinsonism. Parkinsonism Relat Disord 15(4):324–326. doi:10.​1016/​j.​parkreldis.​2008.​07.​001 PubMedCrossRef
93.
Zurück zum Zitat Hedrich K, Djarmati A, Schafer N, Hering R, Wellenbrock C, Weiss PH, Hilker R, Vieregge P, Ozelius LJ, Heutink P, Bonifati V, Schwinger E, Lang AE, Noth J, Bressman SB, Pramstaller PP, Riess O, Klein C (2004) DJ-1 (PARK7) mutations are less frequent than parkin (PARK2) mutations in early-onset Parkinson disease. Neurology 62(3):389–394PubMedCrossRef Hedrich K, Djarmati A, Schafer N, Hering R, Wellenbrock C, Weiss PH, Hilker R, Vieregge P, Ozelius LJ, Heutink P, Bonifati V, Schwinger E, Lang AE, Noth J, Bressman SB, Pramstaller PP, Riess O, Klein C (2004) DJ-1 (PARK7) mutations are less frequent than parkin (PARK2) mutations in early-onset Parkinson disease. Neurology 62(3):389–394PubMedCrossRef
94.
Zurück zum Zitat Lev N, Roncevic D, Ickowicz D, Melamed E, Offen D (2006) Role of DJ-1 in Parkinson’s disease. J Mol Neurosci 29(3):215–225PubMedCrossRef Lev N, Roncevic D, Ickowicz D, Melamed E, Offen D (2006) Role of DJ-1 in Parkinson’s disease. J Mol Neurosci 29(3):215–225PubMedCrossRef
96.
Zurück zum Zitat Xu J, Zhong N, Wang H, Elias JE, Kim CY, Woldman I, Pifl C, Gygi SP, Geula C, Yankner BA (2005) The Parkinson’s disease-associated DJ-1 protein is a transcriptional co-activator that protects against neuronal apoptosis. Hum Mol Genet 14(9):1231–1241. doi:10.1093/hmg/ddi134 PubMedCrossRef Xu J, Zhong N, Wang H, Elias JE, Kim CY, Woldman I, Pifl C, Gygi SP, Geula C, Yankner BA (2005) The Parkinson’s disease-associated DJ-1 protein is a transcriptional co-activator that protects against neuronal apoptosis. Hum Mol Genet 14(9):1231–1241. doi:10.​1093/​hmg/​ddi134 PubMedCrossRef
97.
Zurück zum Zitat Bandopadhyay R, Kingsbury AE, Cookson MR, Reid AR, Evans IM, Hope AD, Pittman AM, Lashley T, Canet-Aviles R, Miller DW, McLendon C, Strand C, Leonard AJ, Abou-Sleiman PM, Healy DG, Ariga H, Wood NW, de Silva R, Revesz T, Hardy JA, Lees AJ (2004) The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson’s disease. Brain 127(Pt 2):420–430. doi:10.1093/brain/awh054 PubMedCrossRef Bandopadhyay R, Kingsbury AE, Cookson MR, Reid AR, Evans IM, Hope AD, Pittman AM, Lashley T, Canet-Aviles R, Miller DW, McLendon C, Strand C, Leonard AJ, Abou-Sleiman PM, Healy DG, Ariga H, Wood NW, de Silva R, Revesz T, Hardy JA, Lees AJ (2004) The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson’s disease. Brain 127(Pt 2):420–430. doi:10.​1093/​brain/​awh054 PubMedCrossRef
98.
Zurück zum Zitat Besong Agbo D, Klafki H, Poschmann G, Seyfarth K, Genius J, Janssen C, Stuhler K, Wurst W, Meyer HE, Klingenspor M, Wiltfang J (2013) Development of a capillary isoelectric focusing immunoassay to measure DJ-1 isoforms in biological samples. Anal Biochem 443(2):197–204. doi:10.1016/j.ab.2013.09.013 PubMedCrossRef Besong Agbo D, Klafki H, Poschmann G, Seyfarth K, Genius J, Janssen C, Stuhler K, Wurst W, Meyer HE, Klingenspor M, Wiltfang J (2013) Development of a capillary isoelectric focusing immunoassay to measure DJ-1 isoforms in biological samples. Anal Biochem 443(2):197–204. doi:10.​1016/​j.​ab.​2013.​09.​013 PubMedCrossRef
99.
Zurück zum Zitat Kumaran R, Kingsbury A, Coulter I, Lashley T, Williams D, de Silva R, Mann D, Revesz T, Lees A, Bandopadhyay R (2007) DJ-1 (PARK7) is associated with 3R and 4R tau neuronal and glial inclusions in neurodegenerative disorders. Neurobiol Dis 28(1):122–132. doi:10.1016/j.nbd.2007.07.012 PubMedCrossRef Kumaran R, Kingsbury A, Coulter I, Lashley T, Williams D, de Silva R, Mann D, Revesz T, Lees A, Bandopadhyay R (2007) DJ-1 (PARK7) is associated with 3R and 4R tau neuronal and glial inclusions in neurodegenerative disorders. Neurobiol Dis 28(1):122–132. doi:10.​1016/​j.​nbd.​2007.​07.​012 PubMedCrossRef
101.
Zurück zum Zitat Lin X, Cook TJ, Zabetian CP, Leverenz JB, Peskind ER, Hu SC, Cain KC, Pan C, Edgar JS, Goodlett DR, Racette BA, Checkoway H, Montine TJ, Shi M, Zhang J (2012) DJ-1 isoforms in whole blood as potential biomarkers of Parkinson disease. Sci Rep 2:954. doi:10.1038/srep00954 PubMedCentralPubMed Lin X, Cook TJ, Zabetian CP, Leverenz JB, Peskind ER, Hu SC, Cain KC, Pan C, Edgar JS, Goodlett DR, Racette BA, Checkoway H, Montine TJ, Shi M, Zhang J (2012) DJ-1 isoforms in whole blood as potential biomarkers of Parkinson disease. Sci Rep 2:954. doi:10.​1038/​srep00954 PubMedCentralPubMed
102.
Zurück zum Zitat Zhong N, Kim CY, Rizzu P, Geula C, Porter DR, Pothos EN, Squitieri F, Heutink P, Xu J (2006) DJ-1 transcriptionally up-regulates the human tyrosine hydroxylase by inhibiting the sumoylation of pyrimidine tract-binding protein-associated splicing factor. J Biol Chem 281(30):20940–20948. doi:10.1074/jbc.M601935200 PubMedCrossRef Zhong N, Kim CY, Rizzu P, Geula C, Porter DR, Pothos EN, Squitieri F, Heutink P, Xu J (2006) DJ-1 transcriptionally up-regulates the human tyrosine hydroxylase by inhibiting the sumoylation of pyrimidine tract-binding protein-associated splicing factor. J Biol Chem 281(30):20940–20948. doi:10.​1074/​jbc.​M601935200 PubMedCrossRef
103.
Zurück zum Zitat Vilarino-Guell C, Soto AI, Lincoln SJ, Ben Yahmed S, Kefi M, Heckman MG, Hulihan MM, Chai H, Diehl NN, Amouri R, Rajput A, Mash DC, Dickson DW, Middleton LT, Gibson RA, Hentati F, Farrer MJ (2009) ATP13A2 variability in Parkinson disease. Hum Mutat 30(3):406–410. doi:10.1002/humu.20877 PubMedCentralPubMedCrossRef Vilarino-Guell C, Soto AI, Lincoln SJ, Ben Yahmed S, Kefi M, Heckman MG, Hulihan MM, Chai H, Diehl NN, Amouri R, Rajput A, Mash DC, Dickson DW, Middleton LT, Gibson RA, Hentati F, Farrer MJ (2009) ATP13A2 variability in Parkinson disease. Hum Mutat 30(3):406–410. doi:10.​1002/​humu.​20877 PubMedCentralPubMedCrossRef
105.
106.
Zurück zum Zitat Lu CS, Lai SC, Wu RM, Weng YH, Huang CL, Chen RS, Chang HC, Wu-Chou YH, Yeh TH (2012) PLA2G6 mutations in PARK14-linked young-onset parkinsonism and sporadic Parkinson’s disease. Am J Med Genet B Neuropsychiatr Genet 159B(2):183–191. doi:10.1002/ajmg.b.32012 PubMedCrossRef Lu CS, Lai SC, Wu RM, Weng YH, Huang CL, Chen RS, Chang HC, Wu-Chou YH, Yeh TH (2012) PLA2G6 mutations in PARK14-linked young-onset parkinsonism and sporadic Parkinson’s disease. Am J Med Genet B Neuropsychiatr Genet 159B(2):183–191. doi:10.​1002/​ajmg.​b.​32012 PubMedCrossRef
107.
Zurück zum Zitat Di Fonzo A, Dekker MC, Montagna P, Baruzzi A, Yonova EH, Correia Guedes L, Szczerbinska A, Zhao T, Dubbel-Hulsman LO, Wouters CH, de Graaff E, Oyen WJ, Simons EJ, Breedveld GJ, Oostra BA, Horstink MW, Bonifati V (2009) FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology 72(3):240–245. doi:10.1212/01.wnl.0000338144.10967.2b PubMedCrossRef Di Fonzo A, Dekker MC, Montagna P, Baruzzi A, Yonova EH, Correia Guedes L, Szczerbinska A, Zhao T, Dubbel-Hulsman LO, Wouters CH, de Graaff E, Oyen WJ, Simons EJ, Breedveld GJ, Oostra BA, Horstink MW, Bonifati V (2009) FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology 72(3):240–245. doi:10.​1212/​01.​wnl.​0000338144.​10967.​2b PubMedCrossRef
109.
Zurück zum Zitat Gomez-Garre P, Jesus S, Carrillo F, Caceres-Redondo MT, Huertas-Fernandez I, Bernal-Bernal I, Bonilla-Toribio M, Vargas-Gonzalez L, Carballo M, Mir P (2014) Systematic mutational analysis of FBXO7 in a Parkinson’s disease population from southern Spain. Neurobiol Aging 35(3):727. e5–7. doi:10.1016/j.neurobiolaging.2013.09.011 Gomez-Garre P, Jesus S, Carrillo F, Caceres-Redondo MT, Huertas-Fernandez I, Bernal-Bernal I, Bonilla-Toribio M, Vargas-Gonzalez L, Carballo M, Mir P (2014) Systematic mutational analysis of FBXO7 in a Parkinson’s disease population from southern Spain. Neurobiol Aging 35(3):727. e5–7. doi:10.​1016/​j.​neurobiolaging.​2013.​09.​011
111.
Zurück zum Zitat Zhao T, De Graaff E, Breedveld GJ, Loda A, Severijnen LA, Wouters CH, Verheijen FW, Dekker MC, Montagna P, Willemsen R, Oostra BA, Bonifati V (2011) Loss of nuclear activity of the FBXO7 protein in patients with parkinsonian-pyramidal syndrome (PARK15). PLoS ONE 6(2):e16983. doi:10.1371/journal.pone.0016983 PubMedCentralPubMedCrossRef Zhao T, De Graaff E, Breedveld GJ, Loda A, Severijnen LA, Wouters CH, Verheijen FW, Dekker MC, Montagna P, Willemsen R, Oostra BA, Bonifati V (2011) Loss of nuclear activity of the FBXO7 protein in patients with parkinsonian-pyramidal syndrome (PARK15). PLoS ONE 6(2):e16983. doi:10.​1371/​journal.​pone.​0016983 PubMedCentralPubMedCrossRef
113.
Zurück zum Zitat Herzfeld T, Nolte D, Grznarova M, Hofmann A, Schultze JL, Muller U (2013) X-linked dystonia parkinsonism syndrome (XDP, lubag): disease-specific sequence change DSC3 in TAF1/DYT3 affects genes in vesicular transport and dopamine metabolism. Hum Mol Genet 22(5):941–951. doi:10.1093/hmg/dds499 PubMedCrossRef Herzfeld T, Nolte D, Grznarova M, Hofmann A, Schultze JL, Muller U (2013) X-linked dystonia parkinsonism syndrome (XDP, lubag): disease-specific sequence change DSC3 in TAF1/DYT3 affects genes in vesicular transport and dopamine metabolism. Hum Mol Genet 22(5):941–951. doi:10.​1093/​hmg/​dds499 PubMedCrossRef
114.
Zurück zum Zitat Korvatska O, Strand NS, Berndt JD, Strovas T, Chen DH, Leverenz JB, Kiianitsa K, Mata IF, Karakoc E, Greenup JL, Bonkowski E, Chuang J, Moon RT, Eichler EE, Nickerson DA, Zabetian CP, Kraemer BC, Bird TD, Raskind WH (2013) Altered splicing of ATP6AP2 causes X-linked parkinsonism with spasticity (XPDS). Hum Mol Genet 22(16):3259–3268. doi:10.1093/hmg/ddt180 PubMedCentralPubMedCrossRef Korvatska O, Strand NS, Berndt JD, Strovas T, Chen DH, Leverenz JB, Kiianitsa K, Mata IF, Karakoc E, Greenup JL, Bonkowski E, Chuang J, Moon RT, Eichler EE, Nickerson DA, Zabetian CP, Kraemer BC, Bird TD, Raskind WH (2013) Altered splicing of ATP6AP2 causes X-linked parkinsonism with spasticity (XPDS). Hum Mol Genet 22(16):3259–3268. doi:10.​1093/​hmg/​ddt180 PubMedCentralPubMedCrossRef
116.
Zurück zum Zitat Keyser RJ, Oppon E, Carr JA, Bardien S (2011) Identification of Parkinson’s disease candidate genes using CAESAR and screening of MAPT and SNCAIP in South African Parkinson’s disease patients. J Neural Transm 118(6):889–897. doi:10.1007/s00702-011-0591-z PubMedCrossRef Keyser RJ, Oppon E, Carr JA, Bardien S (2011) Identification of Parkinson’s disease candidate genes using CAESAR and screening of MAPT and SNCAIP in South African Parkinson’s disease patients. J Neural Transm 118(6):889–897. doi:10.​1007/​s00702-011-0591-z PubMedCrossRef
117.
Zurück zum Zitat Marx FP, Holzmann C, Strauss KM, Li L, Eberhardt O, Gerhardt E, Cookson MR, Hernandez D, Farrer MJ, Kachergus J, Engelender S, Ross CA, Berger K, Schols L, Schulz JB, Riess O, Kruger R (2003) Identification and functional characterization of a novel R621C mutation in the synphilin-1 gene in Parkinson’s disease. Hum Mol Genet 12(11):1223–1231PubMedCrossRef Marx FP, Holzmann C, Strauss KM, Li L, Eberhardt O, Gerhardt E, Cookson MR, Hernandez D, Farrer MJ, Kachergus J, Engelender S, Ross CA, Berger K, Schols L, Schulz JB, Riess O, Kruger R (2003) Identification and functional characterization of a novel R621C mutation in the synphilin-1 gene in Parkinson’s disease. Hum Mol Genet 12(11):1223–1231PubMedCrossRef
118.
Zurück zum Zitat Eyal A, Szargel R, Avraham E, Liani E, Haskin J, Rott R, Engelender S (2006) Synphilin-1A: an aggregation-prone isoform of synphilin-1 that causes neuronal death and is present in aggregates from alpha-synucleinopathy patients. Proc Natl Acad Sci U S A 103(15):5917–5922. doi:10.1073/pnas.0509707103 PubMedCentralPubMedCrossRef Eyal A, Szargel R, Avraham E, Liani E, Haskin J, Rott R, Engelender S (2006) Synphilin-1A: an aggregation-prone isoform of synphilin-1 that causes neuronal death and is present in aggregates from alpha-synucleinopathy patients. Proc Natl Acad Sci U S A 103(15):5917–5922. doi:10.​1073/​pnas.​0509707103 PubMedCentralPubMedCrossRef
119.
Zurück zum Zitat Eyal A, Engelender S (2006) Synphilin isoforms and the search for a cellular model of Lewy body formation in Parkinson’s disease. Cell Cycle 5(18):2082–2086PubMedCrossRef Eyal A, Engelender S (2006) Synphilin isoforms and the search for a cellular model of Lewy body formation in Parkinson’s disease. Cell Cycle 5(18):2082–2086PubMedCrossRef
123.
Zurück zum Zitat Svobodova E, Mrazova L, Luksan O, Elstein D, Zimran A, Stolnaya L, Minks J, Eberova J, Dvorakova L, Jirsa M, Hrebicek M (2011) Glucocerebrosidase gene has an alternative upstream promoter, which has features and expression characteristic of housekeeping genes. Blood Cells Mol Dis 46(3):239–245. doi:10.1016/j.bcmd.2010.12.011 PubMedCrossRef Svobodova E, Mrazova L, Luksan O, Elstein D, Zimran A, Stolnaya L, Minks J, Eberova J, Dvorakova L, Jirsa M, Hrebicek M (2011) Glucocerebrosidase gene has an alternative upstream promoter, which has features and expression characteristic of housekeeping genes. Blood Cells Mol Dis 46(3):239–245. doi:10.​1016/​j.​bcmd.​2010.​12.​011 PubMedCrossRef
125.
Zurück zum Zitat Thomas T (2000) Monoamine oxidase-B inhibitors in the treatment of Alzheimer’s disease. Neurobiol Aging 21(2):343–348PubMedCrossRef Thomas T (2000) Monoamine oxidase-B inhibitors in the treatment of Alzheimer’s disease. Neurobiol Aging 21(2):343–348PubMedCrossRef
126.
Zurück zum Zitat Stern G (1998) Neuroprotection by selegiline and other MAO inhibitors. J Neural Transm Suppl 52:99–107PubMedCrossRef Stern G (1998) Neuroprotection by selegiline and other MAO inhibitors. J Neural Transm Suppl 52:99–107PubMedCrossRef
129.
Zurück zum Zitat Sobell JL, Lind TJ, Hebrink DD, Heston LL, Sommer SS (1997) Screening the monoamine oxidase B gene in 100 male patients with schizophrenia: a cluster of polymorphisms in African-Americans but lack of functionally significant sequence changes. Am J Med Genet 74(1):44–49PubMedCrossRef Sobell JL, Lind TJ, Hebrink DD, Heston LL, Sommer SS (1997) Screening the monoamine oxidase B gene in 100 male patients with schizophrenia: a cluster of polymorphisms in African-Americans but lack of functionally significant sequence changes. Am J Med Genet 74(1):44–49PubMedCrossRef
131.
Zurück zum Zitat Stamper C, Siegel A, Liang WS, Pearson JV, Stephan DA, Shill H, Connor D, Caviness JN, Sabbagh M, Beach TG, Adler CH, Dunckley T (2008) Neuronal gene expression correlates of Parkinson’s disease with dementia. Mov Disord 23(11):1588–1595. doi:10.1002/mds.22184 PubMedCentralPubMedCrossRef Stamper C, Siegel A, Liang WS, Pearson JV, Stephan DA, Shill H, Connor D, Caviness JN, Sabbagh M, Beach TG, Adler CH, Dunckley T (2008) Neuronal gene expression correlates of Parkinson’s disease with dementia. Mov Disord 23(11):1588–1595. doi:10.​1002/​mds.​22184 PubMedCentralPubMedCrossRef
132.
Zurück zum Zitat Soreq L, Bergman H, Israel Z, Soreq H (2012) Exon arrays reveal alternative splicing aberrations in Parkinson’s disease leukocytes. Neurodegener Dis 10(1–4):203–206. doi:10.1159/000332598 PubMedCrossRef Soreq L, Bergman H, Israel Z, Soreq H (2012) Exon arrays reveal alternative splicing aberrations in Parkinson’s disease leukocytes. Neurodegener Dis 10(1–4):203–206. doi:10.​1159/​000332598 PubMedCrossRef
135.
137.
Zurück zum Zitat Soreq L, Salomonis N, Bronstein M, Greenberg DS, Israel Z, Bergman H, Soreq H (2013) Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation-induced splicing changes that classify brain region transcriptomes. Front Mol Neurosci 6:10. doi:10.3389/fnmol.2013.00010 PubMedCentralPubMedCrossRef Soreq L, Salomonis N, Bronstein M, Greenberg DS, Israel Z, Bergman H, Soreq H (2013) Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation-induced splicing changes that classify brain region transcriptomes. Front Mol Neurosci 6:10. doi:10.​3389/​fnmol.​2013.​00010 PubMedCentralPubMedCrossRef
Metadaten
Titel
Splicing: is there an alternative contribution to Parkinson’s disease?
verfasst von
Valentina La Cognata
Velia D’Agata
Francesca Cavalcanti
Sebastiano Cavallaro
Publikationsdatum
01.10.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Neurogenetics / Ausgabe 4/2015
Print ISSN: 1364-6745
Elektronische ISSN: 1364-6753
DOI
https://doi.org/10.1007/s10048-015-0449-x

Weitere Artikel der Ausgabe 4/2015

neurogenetics 4/2015 Zur Ausgabe

Acknowledgement to Referees

Acknowledgement to Referees 2014/2015

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.