Skip to main content

Advertisement

Log in

Serum prolidase activity and oxidative status in patients with diabetic neuropathy

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

We found no data in the literature related to oxidative stress index (OSI), total oxidative status (TOS) and prolidase activity in patients with diabetic neuropathy (DN). In this study, we aimed to evaluate the oxidative status of DN patients via measurement of TOS and serum total antioxidant status (TAS) and estimation of OSI using new automated methods. Thirty-eight healthy participants, 40 diabetic patients without neuropathy, and 39 patients with DN were included. Electrophysiological and neurological examinations were performed. The activity of prolidase and levels of TOS and TAS were determined in the serum of patients. The level of TAS was lower, while the levels of TOS and OSI, and activity of prolidase were higher in both DN and diabetic control groups compared with the healthy subjects (p < 0.05). Prolidase activity was found to be higher in the DN group than in the diabetic control group (p = 0.001). In conclusion, the presence of high TOS and OSI levels together with low levels of TAS in diabetic patients with or without neuropathy may support a role of oxidative stress in the pathogenesis of diabetes mellitus. In addition, increased serum prolidase activity in DN may be interpreted as evidence of increased collagen turnover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Barbosa AP, Medina JL, Ramos EP, Barros HP (2001) Prevalence and risk factors of clinical diabetic polyneuropathy in a Portuguese primary health care population. Diabetes Metab 27:496–502

    PubMed  CAS  Google Scholar 

  2. Hoeldtke RD, Bryner KD, VanDyke K (2011) Oxidative stress and autonomic nerve function in early type 1 diabetes. Clin Auton Res 21:19–28

    Article  PubMed  Google Scholar 

  3. Yamagishi S, Ueda S, Matsui T, Nakamura K, Okuda S (2008) Role of advanced glycation end products (AGEs) and oxidative stress in diabetic retinopathy. Curr Pharm Des 14:962–968

    Article  PubMed  CAS  Google Scholar 

  4. Kamboj SS, Vasishta RK, Sandhir R (2010) N-acetylcysteine inhibits hyperglycemia induced oxidative stress and apoptosis markers in diabetic neuropathy. J Neurochem 112:77–91

    Article  PubMed  CAS  Google Scholar 

  5. dos Santos Sales ÍM, do Nascimento KG, Feitosa CM, Saldanha GB, Feng D, de Freitas RM (2011) Caffeic acid effects on oxidative stress in rat hippocampus after pilocarpine-induced seizures. Neurol Sci 32:375–380

    Article  PubMed  Google Scholar 

  6. Vincent AM, Kato K, McLean LL, Soules ME, Feldman EL (2009) Sensory neurons and Schwann cells respond to oxidative stress by increasing antioxidant defense mechanisms. Antioxid Redox Signal 11:425–438

    Article  PubMed  CAS  Google Scholar 

  7. Figueroa-Romero C, Sadidi M, Feldman EL (2008) Mechanisms of disease: the oxidative stress theory of diabetic neuropathy. Rev Endocr Metab Disord 9:301–314

    Article  PubMed  CAS  Google Scholar 

  8. Yokoyama H, Uchida H, Kuroiwa H, Kasahara J, Araki T (2011) Role of glial cells in neurotoxin-induced animal models of Parkinson’s disease. Neurol Sci 32:1–7

    Article  PubMed  CAS  Google Scholar 

  9. Cakmak A, Soker M, Koc A, Erel O (2009) Paraoxonase and arylesterase activity with oxidative status in children with thalassemia major. J Pediatr Hematol Oncol 31:583–587

    Article  PubMed  CAS  Google Scholar 

  10. Aslan M, Sabuncu T, Kocyigit A, Celik H, Selek S (2007) Relationship between total oxidant status and severity of diabetic nephropathy in type 2 diabetic patients. Nutr Metab Cardiovasc Dis 17:734–740

    Article  PubMed  CAS  Google Scholar 

  11. Araki S, Haneda M, Koya D, Isshiki K, Kume S, Sugimoto T, Kawai H, Nishio Y, Kashiwagi A, Uzu T, Maegawa H (2010) Association between urinary type IV collagen level and deterioration of renal function in type 2 diabetic patients without overt proteinuria. Diabetes Care 33:1805–1810

    Article  PubMed  CAS  Google Scholar 

  12. Hill R (2009) Extracellular matrix remodelling in human diabetic neuropathy. J Anat 214:219–225

    Article  PubMed  Google Scholar 

  13. Bradley JL, King RH, Muddle JR, Thomas PK (2000) The extracellular matrix of peripheral nerve in diabetic polyneuropathy. Acta Neuropathol 99:539–546

    Article  PubMed  CAS  Google Scholar 

  14. Arkkila PE, Rönnemaa T, Koskinen PJ, Kantola IM, Seppänen E, Viikari JS (2001) Biochemical markers of type III and I collagen: association with retinopathy and neuropathy in type 1 diabetic subjects. Diabet Med 18:816–821

    Article  PubMed  CAS  Google Scholar 

  15. Savas M, Yeni E, Verit A, Gulum M, Aksoy N, Ciftci H, Celik H, Altunkol A, Oncel H (2010) Acute effect of phosphodiesterase type 5 inhibitor on serum oxidative status and prolidase activities in men with erectile dysfunction. Clinics (Sao Paulo) 65:1311–1314

    Article  Google Scholar 

  16. Expert Committee on the Diagnosis, Classification of diabetes mellitus (2003) Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 26:5–20

    Article  Google Scholar 

  17. Bril V, Perkins BA (2002) Validation of the Toronto Clinical Scoring System for diabetic polyneuropathy. Diabetes Care 25:2048–2052

    Article  PubMed  Google Scholar 

  18. American Diabetes Association (1998) Report and recommendations of the San Antonio Conference on diabetic neuropathy. Muscle Nerve 11:661–667

    Article  Google Scholar 

  19. Erel O (2004) A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem 37:112–119

    Article  PubMed  CAS  Google Scholar 

  20. Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38:1103–1111

    Article  PubMed  CAS  Google Scholar 

  21. Myara I, Charpentier C, Lemonnier A (1982) Optimal conditions for prolidase assay by proline colorimetric determination: application to imminodipeptiduria. Clin Chim Acta 125:193–205

    Article  PubMed  CAS  Google Scholar 

  22. Chinard FP (1952) Photometric estimation of proline and ornithine. J Biol Chem 199:91–95

    PubMed  CAS  Google Scholar 

  23. Chistiakov DA, Zotova EV, Savost’anov KV, Bursa TR, Galeev IV, Strokov IA, Nosikov VV (2006) The 262T>C promoter polymorphism of the catalase gene is associated with diabetic neuropathy in type 1 diabetic Russian patients. Diabetes Metab 32:63–68

    Article  PubMed  CAS  Google Scholar 

  24. Ozkul A, Ayhan M, Yenisey C, Akyol A, Guney E, Ergin FA (2010) The role of oxidative stress and endothelial injury in diabetic neuropathy and neuropathic pain. Neuro Endocrinol Lett 31:261–264

    PubMed  CAS  Google Scholar 

  25. Dordević G, Durić S, Apostolskit S, Dordević V, Zivković M (2008) Total antioxidant blood capacity in patients with type 2 diabetes mellitus and distal symmetrical polyneuropathy. Vojnosanit Pregl 65:663–669

    Article  PubMed  Google Scholar 

  26. Yildiz A, Demirbag R, Yilmaz R, Gur M, Altiparmak IH, Akyol S, Aksoy N, Ocak AR, Erel O (2008) The association of serum prolidase activity with the presence and severity of coronary artery disease. Coron Artery Dis 19:319–325

    Article  PubMed  Google Scholar 

  27. Erbagci AB, Araz M, Erbagci A, Tarakcioglu M, Namiduru ES (2002) Serum prolidase activity as a marker of osteoporosis in type 2 diabetes mellitus. Clin Biochem 35:263–268

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ertugrul Uzar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uzar, E., Tamam, Y., Evliyaoglu, O. et al. Serum prolidase activity and oxidative status in patients with diabetic neuropathy. Neurol Sci 33, 875–880 (2012). https://doi.org/10.1007/s10072-011-0857-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-011-0857-0

Keywords

Navigation