Skip to main content
Log in

Neural correlates of consciousness: what we know and what we have to learn!

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Consciousness is a multifaceted concept with two major components: awareness of environment and of self (i.e., the content of consciousness) and wakefulness (i.e., the level of consciousness). Medically speaking, consciousness is the state of the patient’s awareness of self and environment and his responsiveness to external stimulation and inner need. A basic understanding of consciousness and its neural correlates is of major importance for all clinicians, especially those involved with patients suffering from altered states of consciousness. To this end, in this review it is shown that consciousness is dependent on the brainstem and thalamus for arousal; that basic cognition is supported by recurrent electrical activity between the cortex and the thalamus at gamma band frequencies; and that some kind of working memory must, at least fleetingly, be present for awareness to occur. New advances in neuroimaging studies are also presented in order to better understand and demonstrate the neurophysiological basis of consciousness. In particular, recent functional magnetic resonance imaging studies have offered the possibility to measure directly and non-invasively normal and severely brain damaged subjects’ brain activity, whilst diffusion tensor imaging studies have allowed evaluating white matter integrity in normal subjects and patients with disorder of consciousness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zeman A (2006) What do we mean by “conscious” and “aware”? Neuropsychol Rehabil 16:356–376

    Article  PubMed  Google Scholar 

  2. Seth AK, Baars BJ, Edelman DB (2005) Criteria for consciousness in humans and other mammals. Conscious Cogn 14:119–139

    Article  PubMed  Google Scholar 

  3. Young GB, Wijdicks EF (2008) Consciousness: its neurological relevance. Handb Clin Neurol 90:33–36

    Article  PubMed  Google Scholar 

  4. Zeman A (2001) Consciousness. Brain 124:1263–1289

    CAS  PubMed  Google Scholar 

  5. Massimini M, Ferrarelli F, Sarasso S, Tononi G (2012) Cortical mechanisms of loss of consciousness:insight from TMS/EEG studies. Arch Ital Biol 150:44–55

    CAS  PubMed  Google Scholar 

  6. Tononi G (2005) Consciousness, information integration, and the brain. Prog Brain Res 150:109–126

    Article  PubMed  Google Scholar 

  7. Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1(4):455–473

    Article  CAS  PubMed  Google Scholar 

  8. Neylan TC (1995) Physiology of arousal: moruzzi and Magoun’s ascending reticular activating system. J Neuropsychiatry Clin Neurosci 7(2):250

    Article  CAS  PubMed  Google Scholar 

  9. Laureys S (2005) The neural correlate of (un)awareness: lessons from the vegetative state. Trends Cogn Sci 9(12):556–559

    Article  PubMed  Google Scholar 

  10. Palmiter RD (2011) Dopamine signaling as a neural correlate of consciousness. Neuroscience 198:213–220

    Article  CAS  PubMed  Google Scholar 

  11. Sumner P, Nachev P, Morris P, Peters AM, Jackson SR, Kennard C, Masun H (2007) Human medial frontal cortex mediates unconscious inhibition of voluntary action. Neuron 54(5):697–711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Corr PJ (2004) Reinforcement sensitivity theory and personality. Neurosci Biobehav Rev 28:317–332

    Article  PubMed  Google Scholar 

  13. Fuentes P, Barrós-Loscertales A, Bustamante JC, Rosell P, Costumero V, Ávila C (2012) Individual differences in the behavioral inhibition system are associated with orbitofrontal cortex and precuneus gray matter volume. Cogn Affect Behav Neurosci 12:491–498

    Article  PubMed  Google Scholar 

  14. Jones BE (2003) Arousal systems. Front Biosci 8:s438–s451

    Article  CAS  PubMed  Google Scholar 

  15. Edlow BL, Takahashi E, Wu O, Benner T, Dai G, Bu L, Grant PE, Greer DM, Greenberg SM, Kinney HC, Folkerth RD (2012) Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders. J Neuropathol Exp Neurol 71(6):531–546

    Article  PubMed Central  PubMed  Google Scholar 

  16. Yeo SS, Chang PH, Jang SH (2013) The ascending reticular activating system from pontine reticular formation to the thalamus in the human brain. Front Hum Neurosci 25(7):416

    Google Scholar 

  17. Schiff ND (2008) Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Ann N Y Acad Sci 1129:105–118

    Article  PubMed  Google Scholar 

  18. Ward LM (2011) The thalamic dynamic core theory of conscious experience. Conscious Cogn 20(2):464–486

    Article  PubMed  Google Scholar 

  19. Chow HM, Horovitz SG, Carr WS, Picchioni D, Coddington N, Fukunaga M, Xu Y, Balkin TJ, Duyn JH, Braun AR (2013) Rhythmic alternating patterns of brain activity distinguish rapid eye movement sleep from other states of consciousness. Proc Natl Acad Sci USA 110(25):10300–10305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Sattin D, Covelli V, Pagani M, Giovannetti AM, Raggi A, Meucci P, Cerniauskaite M, Quintas R, Schiavolin S, Leonardi M (2014) Do diagnostic differences between vegetative state and minimally conscious state patients correspond to differences in functioning and disability profiles? Results from an observational multi-center study on patients with DOC. Eur J Phys Rehabil MED 50:1–2

    Google Scholar 

  21. Andronache A, Rosazza C, Sattin D, Leonardi M, D’Incerti L, Minati L (2013) Impact of functional MRI data preprocessing pipeline on default-mode network detectability in patients with disorders of consciousness. Front Neuroinform 22(7):16

    Google Scholar 

  22. Jalewa J, Joshi A, McGinnity TM, Prasad G, Wong-Lin KF, Hölscher C (2014) Neural circuit interactions between the dorsal raphe nucleus and the lateral hypothalamus: an experimental and computational study. PLoS One 9(2):e88003

    Article  PubMed Central  PubMed  Google Scholar 

  23. Boly M, Seth AK, Wilke M, Ingmundson P, Baars B, Laureys S, Edelman DB, Tsuchiya N (2013) Consciousness in humans and non-human animals: recent advances and future directions. Front Psychol 4:625

    Article  PubMed Central  PubMed  Google Scholar 

  24. Woolf NJ, Butcher LL (2011) Cholinergic systems mediate action from movement to higher consciousness. Behav Brain Res 221(2):488–498

    Article  CAS  PubMed  Google Scholar 

  25. Lucas-Meunier E, Fossier P, Baux G, Amar M (2003) Cholinergic modulation of the cortical neuronal network. Pflugers Arch 446(1):17–29

    CAS  PubMed  Google Scholar 

  26. Troiani V, Schultz RT (2013) Amygdala, pulvinar, and inferior parietal cortex contribute to early processing of faces without awareness. Front Hum Neurosci 6(7):241

    Google Scholar 

  27. Williams LM, Liddell BJ, Kemp AH, Bryant RA, Meares RA, Peduto AS, Gordon E (2006) Amygdala-prefrontal dissociation of subliminal and supraliminal fear. Hum Brain Mapp 27(8):652–661

    Article  PubMed  Google Scholar 

  28. Khetrapal N (2008) The framework for disturbed affective consciousness in autism. Neuropsychiatr Dis Treat 4(3):531–533

    Article  PubMed Central  PubMed  Google Scholar 

  29. Amting JM, Greening SG, Mitchell DG (2010) Multiple mechanisms of consciousness: the neural correlates of emotional awareness. J Neurosci 30(30):10039–10047

    Article  CAS  PubMed  Google Scholar 

  30. Robinson S, Basso G, Soldati N, Sailer U, Jovicich J, Bruzzone L, Kryspin-Exner I, Bauer H, Moser E (2009) A resting state network in the motor control circuit of the basal ganglia. BMC Neurosci 10:137

    Article  PubMed Central  PubMed  Google Scholar 

  31. Cotterill RM (2001) Cooperation of the basal ganglia, cerebellum, sensory cerebrum and hippocampus: possible implications for cognition, consciousness, intelligence and creativity. Prog Neurobiol 64(1):1–33

    Article  CAS  PubMed  Google Scholar 

  32. Baars BJ, Ramsoy TZ, Laureys S (2003) Brain, conscious experience and the observing self. Trends Neurosci 26:671–675

    Article  CAS  PubMed  Google Scholar 

  33. Rolls ET (2004) Functions of the Orbitofrontal Cortex. Brain Cogn 55:11–29

    Article  PubMed  Google Scholar 

  34. Dietrich A (2003) Functional neuroanatomy of altered states of consciousness: the transient hypofrontality hypothesis. Conscious Cogn 12(2):231–256

    Article  PubMed  Google Scholar 

  35. Goldfine AM, Schiff ND (2011) Consciousness: its Neurobiology and the Major Classes of Impairment. Neurol Clin 29(4):723–737

    Article  PubMed Central  PubMed  Google Scholar 

  36. Qin P, Di H, Liu Y, Yu S, Gong Q, Duncan N, Weng X, Laureys S, Northoff G (2010) Anterior cingulate activity and the self in disorders of consciousness. Hum Brain Mapp 31(12):1993–2002

    Article  PubMed  Google Scholar 

  37. Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129(pt 3):564–583

    Article  PubMed  Google Scholar 

  38. Cavanna AE (2007) The precuneus and consciousness. CNS Spectr 12:545–552

    PubMed  Google Scholar 

  39. Vogt BA, Laureys S (2005) Posterior cingulate, precuneal and retrosplenial cortices: cytology and components of the neural network correlates of consciousness. Prog Brain Res 150:205–217

    Article  PubMed Central  PubMed  Google Scholar 

  40. Binder JR, Frost JA, Hammeke TA, Bellgowan PSF, Rao SM, Cox RW (1999) Conceptual processing during the conscious resting state. A functional MRI study. J Cogn Neurosci 11:80–93

    Article  CAS  PubMed  Google Scholar 

  41. Crone JS, Soddu A, Höller Y, Vanhaudenhuyse A, Schurz M, Bergmann J, Schmid E, Trinka E, Laureys S, Kronbichler M (2014) Altered network properties of the fronto-parietal network and the thalamus in impaired consciousness. Neuroimage Clin 4:240–248

    Article  PubMed Central  PubMed  Google Scholar 

  42. Negrao BL, Viljoen M (2009) Neural correlates of consciousness. Afr J Psychiatry (Johannesbg) 12(4):265–269

    CAS  Google Scholar 

  43. Heine L, Soddu A, Gómez F, Vanhaudenhuyse A, Tshibanda L, Thonnard M, Charland-Verville V, Kirsch M, Laureys S, Demertzi A (2012) Resting state networks and consciousness: alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness States. Front Psychol 3:295

    Article  PubMed Central  PubMed  Google Scholar 

  44. Bob P, Zimmerman EM, Hamilton EA, Sheftel JG, Bajo SD, Raboch J, Golla M, Konopka LM (2012) Conscious attention, meditation, and bilateral information transfer. Clin EEG Neurosci 44(1):39–43

    Article  PubMed  Google Scholar 

  45. Miller SM (2014) Closing in on the constitution of consciousness. Front Psychol 5:1293

    PubMed Central  PubMed  Google Scholar 

  46. Silva S, Alacoque X, Fourcade O, Samii K, Marque P, Woods R, Mazziotta J, Chollet F, Loubinoux I (2010) Wakefulness and loss of awareness: brain and brainstem interaction in the vegetative state. Neurology 74(4):313–320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Laureys S, Goldman S, Phillips C, Van Bogaert P, Aerts J et al (1999) Impaired effective cortical connectivity in vegetative state: preliminary investigation using PET. Neuroimage 9(4):377–382

    Article  CAS  PubMed  Google Scholar 

  48. Guldenmund P, Vanhaudenhuyse A, Boly M, Laureys S, Soddu A (2012) A default mode of brain function in altered states of consciousness. Arch Ital Biol 150(2–3):107–121

    CAS  PubMed  Google Scholar 

  49. Levy DE, Sidtis JJ, Rottenberg DA, Jarden JO, Strother SC, Dhawan V et al (1897) Differences in cerebral blood flow and glucose utilization in vegetative versus locked-in patients. Ann Neurol 22(6):673–682

    Article  Google Scholar 

  50. Neuner I, Arrubla J, Werner CJ, Hitz K, Boers F, Kawohl W, Shah NJ (2014) The default mode network and eeg regional spectral power: a simultaneous fMRI-EEG Study. PLoS One 9(2): e88214

    Article  PubMed Central  PubMed  Google Scholar 

  51. Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJF, Bruno MA, Boveroux P, Schnakers C, Soddu A, Perlbarg V, Ledoux D, Brichant JF, Moonen G, Maquet P, Greicius MD, Laureys S, Boly M (2010) Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 133:161–171

    Article  PubMed Central  PubMed  Google Scholar 

  52. Soddu A, Vanhaudenhuyse A, Demertzi A, Bruno MA, Tshibanda L, Di H, Boly M, Papa M, Laureys S, Noirhomme Q (2011) Resting state activity in patients with disorders of consciousness. Funct Neurol 26(1):37–43

    PubMed Central  PubMed  Google Scholar 

  53. Cauda F, Micon BM, Sacco K et al (2009) Disrupted intrinsic functional connectivity in the vegetative state. J Neurol Neurosurg Psychiatry 80:9–431

    Google Scholar 

  54. Di Perri C, Thibaut A, Heine L, Soddu A, Demertzi A, Laureys S (2014) Measuring consciousness in coma and related states. World J Radiol 6(8):589–597

    Article  PubMed Central  PubMed  Google Scholar 

  55. Hein L, Soddu A, Gómez F, Vanhaudenhuyse A, Tshibanda L, Thonnard M, Charland-Verville V, Kirsch M, Laureys S, Demertzi A (2012) Resting state networks and consciousness: alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness States. Front Psychol 3:295

    Google Scholar 

  56. Naci L, Cusack R, Anello M, Owen AM (2014) A common neural code for similar conscious experiences in different individuals. Proc Natl Acad Sci USA 111(39):14277–14282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Voss HU, Uluc AM, Dyke JP, Watts R, Kobylarz RJ et al (2006) Possible axonal regrowth in late recovery from the minimally conscious state. J Clin Invest 116(7):2005–2011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Tollard E, Galanaud D, Perlbarg V, Sanchez-Pena P, Le Fur Y et al (2009) Experience of diffusion tensor imaging and 1H spectroscopy for outcome prediction in severe traumatic brain injury: preliminary results. Crit Care Med 37(4):1448–1455

    Article  PubMed  Google Scholar 

  59. Perlbarg V, Puybasset L, Tollard E, Lehericy S, Benali H et al (2009) Relation between brain lesion location and clinical outcome in patients with severe traumatic brain injury: a diffusion tensor imaging study using voxel-based approaches. Hum Brain Mapp 30(12):3924–3933

    Article  PubMed  Google Scholar 

  60. Huisman TA, Schwamm LH, Schaefer PW, Koroshetz WJ, Shetty-Alva N et al (2004) Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. AJNR Am J Neuroradiol 25(3):370–376

    PubMed  Google Scholar 

  61. Xu J, Rasmussen IA, Lagopoulos J, Håberg A (2007) Diffuse axonal injury in severe traumatic brain injury visualized using high-resolution diffusion tensor imaging. J Neurotrauma 24(5):753–765

    Article  PubMed  Google Scholar 

  62. Parvizi J, Damasio AR (2003) Neuroanatomical correlates of brainstem coma. Brain 126:1524–1536

    Article  PubMed  Google Scholar 

  63. Schiff ND (2006) Multimodal neuroimaging approaches to disorders of consciousness. J Head Trauma Rehabil 21(5):388–397

    Article  PubMed  Google Scholar 

  64. Tshibanda L, Vanhaudenhuyse A, Galanaud D, Boly M, Laureys S, Puybasset L (2009) Magnetic resonance spectroscopy and diffusion tensor imaging in coma survivors: promises and pitfalls. Prog Brain Res 177:215–229

    Article  PubMed  Google Scholar 

  65. Gawryluk JR, D’Arcy RC, Connolly JF, Weaver DF (2010) Improving the clinical assessment of consciousness with advances in electrophysiological and neuroimaging techniques. BMC Neurol 10:11

    Article  PubMed Central  PubMed  Google Scholar 

  66. Chang MC, Kim SH, Kim OL, Bai DS, Jang SH (2010) The relation between fornix injury and memory impairment in patients with diffuse axonal injury: a diffusion tensor imaging study. NeuroRehabilitation 26:347–353

    PubMed  Google Scholar 

  67. Puig J, Pedraza S, Blasco G, Daunis IEJ, Prats A, Prados F et al (2010) Wallerian degeneration in the corticospinal tract evaluated by diffusion tensor imaging correlates with motor deficit 30 days after middle cerebral artery ischemic stroke. AJNR Am J Neuroradiol 31:1324–1330

    Article  PubMed  Google Scholar 

  68. Laouchedi M, Galanaud D, Delmaire C, Fernandez-Vidal S, Messé A, Mesmoudi S, Oulebsir Boumghar F, Pélégrini-Issac M, Puybasset L, Benali H, Perlbarg V (2014) Deafferentation in thalamic and pontine areas in severe traumatic brain injury. J. Neuroradiol doi 10:1016

    Google Scholar 

  69. Milardi D, Gaeta M, Bramanti P, Milazzo C, Finocchio G, Arrigo A, Santoro G, Trimarchi F, Quartarone A, Anastasi G (2013) Cortical and subcortical connections of the human claustrum revealed in vivo by constrained spherical deconvolution tractography. Cereb Cortex. doi:10.1093/cercor/bht231

    PubMed  Google Scholar 

  70. Tournier JD, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35(4):1459–1472

    Article  PubMed  Google Scholar 

  71. de Graaf TA, Sack AT (2014) Using brain stimulation to disentangle neural correlates of conscious vision. Front Psychol 5:1019

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare neither conflicts of interest nor financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocco Salvatore Calabrò.

Additional information

R. S. Calabrò and A. Cacciola equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calabrò, R.S., Cacciola, A., Bramanti, P. et al. Neural correlates of consciousness: what we know and what we have to learn!. Neurol Sci 36, 505–513 (2015). https://doi.org/10.1007/s10072-015-2072-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-015-2072-x

Keywords

Navigation